CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

PART
Advanced Topics -

Web Services and Beyond

ch10.indd 481 1/10/08 3:43:12 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

ch10.indd 482 1/10/08 3:43:12 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

CHAPTER
Web Services and Beyond

jax and related ideas are changing at a furious pace. In this chapter we present but a

brief overview of a few of the most important areas of change in the world of Ajax,

including the use of remote data and application in the form of Web Services, a
push-style communication pattern generally dubbed Comet, and the final missing piece so
that Web applications can compete with desktop apps: offline storage and operation. Given
the tremendous rate of innovation in each of these areas, our aim is to present an overview
of the idea, a discussion of some of the ramifications and concerns surrounding it, and a
representative example or two with a bit less emphasis on syntax specifics than general
approach. That’s not to say that we won’t provide working examples—there are plenty to
be found here—but compared to those presented in earlier chapters these are more likely to
break as APIs outside of our control change. As such, we encourage readers to visit the book
support site for the latest info in case they encounter problems. So, with warning in hand,
let us begin our exploration of the bleeding edges of Ajax.

Ajax and Web Services

Ajax and Web Services are often mentioned in the same breath, which is quite interesting
considering that as of yet they really do not work well together. As we have seen throughout the
book, at this moment in time (late 2007), the same origin policy restricts cross-domain requests
that would be mandatory in order to use a Web Service directly from client-side JavaScript.
For example, if you desired to build a Web page and hosted it on your server (example.com)
and call a Web Service on (google.com), you could not do so directly using an XHR.

o0 4
'_ GET / dosomething.php _
O
XMLHttpRequest .
Same Origin
Your Web App
S Web Server
(ajaxref.com)
Web Browser
GET / dosomething.php

XMLHttpRequest
Breaks
Same Origin

Remote Server
(ex.yahoo.com)

483

ch10.indd 483 1/10/08 3:43:13 PM

484

Part IlI:

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Advanced Topics

However, there are ways around this limitation as shown in the diagram here and
summarized in Table 10-1.

= 3 [J
i Proxy
Web Browser
URL Forwarding
- ajaxref com/yahoo?fav=x . URL Rewritten
FLASH
A A Web Server
{ ajaxref.com)
Script Tag Workaround >
JS0N response
Binary Bridge >
crossdomain.xmil
Mative Browser Access .
GET request
Remote Server
(ex.yahoo.com)
Approach Description Comments
Proxy Calls a script on the server of Avoids same origin issue.

delivery (within same origin) that
calls remote Web Service on your
behalf and passes the result back.

Puts burden on your server to
forward requests.

May provide a proxy that can be
exploited.

URL forwarding

A variation of the previous method.
Calls a URL on the server (within
same origin), which acts as a
proxy redirect that pipes data
transparently to a remote resource
and back. Usually performed
using a server extension like
mod_rewrite.

Avoids same origin issue.

Puts burden on your server to
forward requests.

May provide a proxy that can be
exploited.

Script Tag Workaround

Makes call to remote service using
a <script> tag that returns a
wrapped JSON response invoking a
function in the hosting page.

Not restricted by same origin.

Script transport not as flexible as
XHR.

Script responses and JSON
responses shown to have some
security concerns these might be
mitigated with browser changes or
the iframe solution discussed in
Chapter 7.

TaBLe 10-1 Summary of Web Service via Ajax Approaches

ch10.indd 484

1/10/08 3:43:13 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10:

Web Services and Beyond

Approach

Description

Comments

Binary Bridge

Uses Flash or Java applet to make
a connection to another domain.
In the case of Flash this relies

on a trust-relationship defined on
the target server specified in a
crossdomain.xml file.

Relies on binary that may not be
installed.

Piping between JavaScript and
binary may be problematic.
Requires configuration of remote
resource to allow for access.

May allow for other communication
methods (for example, sockets)
and binary data formats.

Native Browser Access

In emerging browsers like Firefox 3
you should be able to make a
basic GET request with an XHR
outside of origin as long as there
is a trust relationship defined
(similar to binary bridge solution).

Uses native XHR.

Requires configuration of remote
resource to allow for access.

Not widely implemented as of yet.

TaBLe 10-1 Summary of Web Service via Ajax Approaches (continued)

ch10.indd 485

Server Proxy Solution

The basic idea of a server proxy solution is to submit a request to a server-side program via
an Ajax call, and then that program either passes the request on or triggers a new request to
a Web Service on your behalf. The packet returned from the Web Service can either be
modified before being passed back or just passed on in a raw form. While it may sound
involved to set up, it isn’t terribly difficult. As an example, the rough algorithm for a
transparent forwarding proxy is something like:

define URL you want to call

read the data from the Ajax request

form full query to Web service in question
issue request and save back results

begin response by printing headers

if status of service call

= 200

pass back error message

else

pass back results

As a demonstration, we build a proxy to call the Flickr Web Service to list out images
that match a provided keyword. Flickr provides a simple API to do this using a RESTful
interface where you can issue simple GET or POST requests to perform actions. Flickr
currently has a primary end point URL of:

http://api.flickr.com/services/rest/

This is where you would send your Web Service requests. All calls to the Flickr API take
a parameter method, which is the calling method you are interested in; for example, flickr.
photos.search to search for photos. You are also required to pass a parameter api_key,

485

1/10/08 3:43:13 PM

436

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

which is set to a unique value issued to developers to allow them to make a call. You should
register for your own key (www.flickr.com/services/api/) to run demos, as we will not
provide a working one in print. Expect that many of the other useful Web Services will
require you to register for access as well and use an API key to limit access and abuse.
Finally, an optional format parameter may be used to indicate what format you would like
your reply in:

http://api.flickr.com/services/rest/?method=£flickr.photos.search&api key=
XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX

Besides these basic parameters, you would call the service with a variety of parameters
indicating the types of images you are looking for based upon user ID, tag, description, and
so on. For example:

http://api.flickr.com/services/rest/?method=flickr.photos.search&text=
schnauzer&content type=l&per page=10&safe search=1&api key=
XXXXXX-FAKE-API-KEY-GET-YOUR-OWN - XXXXXX

would perform a safe search for images with a text description containing the word
“schnauzer” and then return only images (content_type), with ten per page. We'll avoid
getting too specific about the API here since it is bound to change. Instead, we point you
directly to the online docs since our goal here is solely to understand the general process of
using a Web Service with a proxy.

After issuing the request, the Flickr service would respond with some packet like:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">

Payload here
</rsp>

If everything worked right, the contents of the packet would contain a variety of tags
depending on what method we invoked. If the request didn’t work, we would get a packet
response like so:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail">

<err code="[error-code]" msg="[error-message]" />
</rsp>

Here is an actual response for the earlier example query for “schnauzer” pictures,
limited to three results.

<rsp stat="ok">
<photos page="1" pages="5993" perpage="3" total="17978">

<photo 1d="1297027770" owner="8644851@N05" secret="e7b3330a6l" server="1258"

farm="2" title=""Brusca"" ispublic="1" isfriend="0" isfamily="0"/>

<photo 1d="1296140191" owner="29807756@N00" secret="all7e20762" server="1077"

farm="2" title="Billy the Kid" ispublic="1" isfriend="0" isfamily="0"/>

<photo 1d="1296129605" owner="29807756@N00" secret="c94aa225bf" server="1438"

farm="2" title="Make this move..." ispublic="1" isfriend="0" isfamily="0"/>
</photos>
</rsp>

ch10.indd 486

1/10/08

3:43:14 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 487

With this process in mind, we see building a simple server proxy is quite easy. For
example, quickly read the following PHP code:

<?php

header ("Cache-Control: no-cache") ;

header ("Pragma: no-cache") ;

header ("Content-Type: text/xml") ;

Squery = $ GET["query"];

$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search&api
key=XXXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXX&safe search=1&per page=1l0&content
type=1l&text=Squery";

Sresult = file get contents (Surl) ;

/* Check response status */

list ($version, $status, Smsg) = explode(' ',S$http response header[0], 3);
if ($status != 200)
echo "Your call to the web service returned an error status of $status.";
else
echo Sresult;
?>

We see that it takes a value in query and forms the URL to call, then it gets the result
and decides whether to pass the packet or send an error message.

To fully develop the example on the client side, we build a simple form to collect the
query string in question and then send it off to the proxy program. You'll note that we make
sure to set a status indicator here as the request might take a while.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd" >

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Flickr Web Service Search using Proxy</title>

<link rel="stylesheet" href="http://ajaxref.com/chl0/global.css" type="text/css"
media="screen" />

<script src="http://ajaxref.com/chl0/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript"s

function search(searchterm)

{

if (searchterm == "")
{
alert ("You must enter a search term") ;
return;
1
var url = "http://ajaxref.com/chl0/proxyflickr.php";
var payload = "query=" + searchterm;
var options = {method:"GET",
payload:payload,
onSuccess: handleResponse,

statusIndicator : { progress :
{type: "text", text: "Searching...", target: "results" }}};
AjaxTCR.comm.sendRequest (url, options) ;

}

function handleResponse (response)

ch10.indd 487 1/10/08 3:43:14 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

488 Part I1l: Advanced Topics

var resultsDiv = $id("results") ;
resultsDiv.innerHTML = "";

var images = response.responseXML.getElementsByTagName ("photo") ;
for (var i=0;i<images.length;i++)

{
var image = images[i];
resultsDiv.innerHTML += "" + image.getAttribute("title") + "
";
resultsDiv.innerHTML += "<img src='http://farm" + image.getAttribute ("farm")
+ ".static.flickr.com/" + image.getAttribute("server") + "/" + image.
getAttribute ("id") + " " + image.getAttribute ("secret") + " m.jpg' />

";
}
}
window.onload = function () {
$id ("requestbutton") .onclick = function() {search($id("query") .value);};
$id("requestForm") .onsubmit = function() {return false;}
}i
</scripts>
</head>
<body>

<div class="content">
<hl>Flickr Search: Server Proxy Version</hls

<form id="requestForm" method="GET" action=
"http://ajaxref.com/chl0/proxyflickr.php" name="requestForm" >
<label>Search Term:
<input type="text" name="query" id="query" id="query" value="Schnauzer"
autocomplete="off" size="30" />
</label>
<input type="submit" id="requestbutton" value="Search" />
</form>
</divs>

<div id="results" class="results"s></div>
</body>
</html>

The result of the previous example is shown in Figure 10-1. You can run this for yourself
using the demo at http://ajaxref.com/ch10/proxyflickr.html.

Data Differences

The proxy solution shouldn’t really care what the end service point returns; it just pipes it
all back for your script to consume—but it doesn’t have to. For example, if a Web Service
returned XML and we needed to consume it as JSON, we could rewrite the content in the
server proxy to deal with that. Here’s the outline of the kind of code that would do that for
our example:

<?php

require once ('XML2JSON.php') ;

header ("Cache-Control: no-cache") ;

header ("Pragma: no-cache") ;

header ("Content-Type: application/json");

ch10.indd 488 1/10/08 3:43:14 PM

¥3 Chapter 10: Flickr Web Service Search using Proxy - Mozilla Firefox

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 489

File Edt Miew History Bookmarks Tools Help

<ﬂ - @ - @ X m “:I hittp: ffajaxref ,comfchl0jproxyflicke html

bl [[Gl]soco- <]

Flickr Search
Search Term |S|:hnauzer Search

Mr. Tinslei

-

Done

O [MB vsbw 14ms

Ficure 10-1 Searching for pictures via a Web Service

$query = $_GET["query"];
rl = "http://api.flickr.com/services/rest/?method=flickr.photos.search&api key=
dcl1lb3d4586£0d925629fe2ed5cf250a&safe search=1&per page=

su

10
Sr
/*
1i

if
e
el

{

ch10.indd 489

&content type=l&text=Squery";

', $http response header[0], 3);

cho "Your call to the web service returned an error status of $status.";

esult = file get contents(Surl);
Check response status */

st ($Sversion, $status, Smsg) = explode ('
(Sstatus != 200)

se

/* take XML string and make DOM tree */

Sdomtree = new DOMDocument () ;
Sdomtree->loadXML (Sresult) ;

/* convert from XML to JSON */
Stransform = new XML2JSON() ;

Sresult = Stransform->convertToJSON (Sdomtree) ;

print S$result;

1/10/08 3:43:14 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

490 Part I11: Advanced Topics

The details of the conversion are not terribly illuminating: you don’t have to pass results
raw to the client; you are free to filter or even combine them with other data. We'll see that
idea later in the chapter when we discuss mash-ups.

Many Web Services provide output options so you do not have to convert their data
format to the one you prefer. The Flickr API provides multiple output formats that can be
requested by setting the format. We can pass the parameter (format=json) and get back
the same type of information as was found in the XML packet but in a wrapped JSON
format, like so:

jsonFlickrApi ({"photos":

{npagen 01,

"pages":4495,

"perpage":3,

"total":"17978",

"photo": [{"1d":"1296140191", "owner":"29807756@N00",
"secret":"all7e20762", "server":"1077", "farm":2, "title":"Billy the Kid",
"ispublic":1, "isfriend":0, "isfamily":0},

{mid":"1296129605", "owner":"29807756@N00",
"secret":"c94aa225bf", "server":"1438", "farm":2, "title":"Make this move...",
"ispublic":1, "isfriend":0, "isfamily":0},

"id":"1296081377", "owner":"29807756@N00",
"secret":"2e0d71c879", "server":"1413", "farm":2, "title":"Clueless",

"ispublic":1, "isfriend":0, "isfamily":0},

1},
)

"stat": "Ok"}

Note the call to the function jsonFlickrApi (), which is what they would want you to
name a default callback function. You can change that using the parameter jsoncallback,
so we might set something like jsoncallback=formatOutput in our request. You can
also eliminate the callback and just pass back the raw JSON packet using the parameter
nojsoncallback=1 in the query string. Our emphasis on this other data format will
become clear in a second when we discuss bypassing the proxy approach all together.

URL Forwarding Scheme

While the previous approach works reasonably well, we do have to write a program to
handle the request. It might be convenient instead to call a particular URL and have it
automatically forward our requests. For example, we might employ mod_proxy and mod_
rewrite for Apache to enable such functionality. Setting a rule in Apache’s config file like
the one below performs a core piece of the desired action.

ProxyPass /flikrprox http://api.flickr.com/services/rest/

Here we indicated that a request on our server to /f1lickrprox will pass along the
request to the remote server. From our Ajax application we would then create a URL like:

http://ajaxref.com/flikrprox/?method=£flickr.photos.search&api key=XXXX-GET-
YOUR-OWN-KEY-XXXX&safe search=1&per page=1l0&content type=l&text=Schnauzer

ch10.indd 490 1/10/08 3:43:14 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 491

As we show here:

var url = "http://ajaxref.com/flickprox";
var flickrMethod = "flickr.photos.search";
var flickrAPIKey = "XXXX-GET-YOUR-OWN-KEY-XXXX";

var payload="?method="+flickrMethod+"&api key"+flickrAPIKey+
"&safe search=1&per page=1l0&content type=1&";
url+= "text=" + searchterm;

var options = {method:"GET",

payload:payload,

onSuccess: handleResponse,

statusIndicator : { progress : {type: "text", text:
"Searching...", target: "results" }}};
AjaxTCR.comm.sendRequest (url, options) ;

and it passes it along to the Flickr site and returns our response packet back to us.

It should be obvious that this approach leaves the URL redirection proxy open to being
abused, but only for that specific site, which is not as bad as leaving it wide open for
anything. We also note that the use of the proxy is not limited to just our API key, which will
also be exposed in the JavaScript and is likely not appropriate to disclose. A better solution
would be to create a rewrite rule on the server to hide some of these details in the rewrite
and then pass on the request in the proxy fashion. Here is a snippet from an apache.config
file that would do this for our example:

RewriteRule “/flickrprox http://api.flickr.com/services/rest/?method=
flickr.photos.search&api key=xxx-YOUR-API-KEY-HERE-xxx&safe search=
l&per page=l0&content type=1 [QSA,P]

ProxyRequests Off

<Proxy *>

Order deny,allow

Allow from all

</Proxy>

ProxyPass /flickrprox http://api.flickr.com/services/rest

With this rule in place we do not have to expose many details in the source as seen here.
You could, of course, rewrite this only to add in the API key in the server-rule, but we show
the example with many variables so you can see that you can perform quite complex
rewrites if you like.

NoOTE URL rewriting and proxying on a Web server can involve some seriously arcane Web
knowledge. We have only skimmed the surface of this topic to show you the possibility of using
the approach. If this approach seems appealing to you, spend some time getting to know mod_
rewrite or your server’s equivalent before approaching the kind of example we presented. It
will save you significant frustration.

A working version of the URL rewrite-proxy approach can be found at http:/ /ajaxref
.com/ch10/urlrewriteproxyflickr.html and is shown in action in Figure 10-2. Notice in the
figure that the network trace clearly shows you do not have a chance on the client side to
see the URL rewriting with the API key in it, and thus the secret is protected.

ch10.indd 491 1/10/08 3:43:15 PM

492 Part I1l: Advanced T

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

opics

Chapter 10 : Flickr Web Service Search using URL Rewriter and Server Proxy - Mozilla Fireflox - 101 %]
File Edit Wew History Bookmarks Tools Help
<f3 - C‘> 2 @ |\,_’/. QI‘ | D htkp: [fajaxref, comyichl0/urrewriteprowyFlickr hml | '| P] "|Google “-«]

Flickr Search

Search Term ISchnﬁuzer

IMG_1345.jpg

IMG_1342.jpg

Search |

TN 2

|+

=

-# Inspect Clear | Al HTWML €55 35 ®HR Images Flash

Y [~ %]

Console HTML (S5 Script DOM | Net | YSlow Ciptions ~
urlrewritepronyflic sjaxref.com 3KB 1,355 1=
global.css ajaxref.com 3KB 1.25s
ajaxtcr.js ajaxref.com 104 KB 1.71s
template.js ajaxref.com 21 KB i

ajanref.com/ch10/fickrprox?text =Schnauzer

Params Headers Response

<%zml version="1.0" encoding=
<rsp stat="ok":
<phatos page="1" pages="1800"

=photo 1d="1303673003"

FBEmS

"ut£-3" =

perpage="10" total="17396">
owner="4325544ZAN00" secret="3dbeSsc3f0"

. jpg" ispublic="l" isfriend="0" isfawily="0" />

<photo 1d="1302784353
Jipg" ispublic="1" isfriend="
<photo 1d="1202668710

-jpg" ispublic="1" isfriend="0"

<phota 1d="1303656938

. jpg" ispublic="1" isfriend="

<photo 1d="1302773035

. jpg" ispublic="1" isfriend="
<photo id="

" ispublic="

"1301035260

1" ispublic="l1" isfriend="0"

“photo id="1Z995132149
ispublic="1" isfriend="0" is
“photo 1d="1Z996176E69
ispublic="1" isfriend="0" is

owmer="43255442@N00" secret="06af20=f45"
" isfamily="0" f»

" ovmer="43255442AH00" secret="094cEa?edd”
isfamily="0" /=

" ovmer="43255442AHN00" secrat="s£9227decz"
0% isfamily="0" />

ovmer="43255442@N00" secret="503alz4bdd"
isfamily="0" /=

owner="72664560N05" secret="46daci7I9L"
"ot disfamily="0" J=

" ovmer="124945730H02" secret="fc3444926d"
isfamily="0" /»

" ovmer="257961330H00" secret="cIb7ScfzaT"
fawily= i

" owmer S7IE13IEN00" secret="8hFZ731078a"
fauily= i

server="13Z5" farm="Z" title="IMG_1345
server="1050" farm="Z2" title="ING 134Z
server="1107" farm="Z" title="ING_ 13432
server="1319" farm="ZI" title="ING 13EZ7
server="119g8" farm="Z" title="ING_13Z5
server="1038" farm="2" title="Mania i
server="1175" farm="2" title="Aipr 07

server="1Z7E" farm="I" title="Cassar"

server="176Z" farm="Z" title="Heidi"

-

| Done

[0 B sz,

Fieure 10-2 URL forwarding proxy to enable Ajax Web Service calls in action

Using the <script> Tag

In both of the previous cases we are relying on the server to help us out, but we should
hope for a more direct path to the Web Service. Given the same origin policy and current

restrictions for cross-domain XHR requests found in browsers circa late 2007, we are forced

to look for alternate transport. The <script> tag transport that has been discussed since

ch10.indd 492

1/10/08 3:43:15 PM

ch10.indd 493

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Chapter 2 is our best candidate. Response-wise we will of course expect JavaScript—usually
a wrapped JSON packet or some raw JavaScript—to execute. We continue with Flickr as it
provides a remote <script> call interface as well.

In the case of Flickr, we saw that their JSON packet is by default wrapped with a function
call like so:

jsonFlickrApi ({JSON object})

Here the JSON object is a representation of the <rsp> element found in the typical
RESTful response. Recall that we can change the callback to our own function name by
passing a jsoncallback parameter (jsoncallback=handleResponse). To execute our
<script> tag Web Service approach, we will need to set all the parameters to the service
ourselves, so we make a simple object to hold all of them.

var flickrConfig = {

method : "flickr.photos.search",
api_key : "dcllb-FAKE-KEY-HEREO--a",
safe search : 1,

per_page : 10,

content type : 1,

format : "json",

jsoncallback : "handleResponse"

i

Now we set up our payload to contain all the items as well as the search term using our
handy AjaxTCR.data.serializeObject () method:

var payload = "text=" + searchterm;
payload = AjaxTCR.data.serializeObject (payload, flickrConfig, "application/
x-www-form-urlencoded") ;

Given that since Chapter 9 we’ve supported other transports in our library, we just
indicate we want to use a <script> tag instead of an XHR when making our request:

var url = "http://api.flickr.com/services/rest/";
var options = {method:"GET",

payload:payload,

transport: "script",

statusIndicator : { progress : {type: "text", text:
"Searching...", target: "progress" }}};
AjaxTCR.comm.sendRequest (url, options) ;

We don’t specify the callback, of course, since the payload will contain it. Now we
should receive a response like so:

CWEriEw | Time Chart | Headers | Cookies | Cache | Query String | POST Data Content IStream |

text/plain; charset=utf-5 : 1739 bytes L Find g Edit [% Export

hendleResponse({"photos": {"page”:l, "pages":B8EE12, "perpage”:10, "total®:"S56124", "photo":[{"id":"1Z974031ZE", "

owmer®:"S474733@N05", "secret':"7fbe78dd4E", "server”:"1181", “"farm":Z, "title":"a building.... or bemt fly-swatter,
howewer you see it", "ispublic":l, "isfriend":0, "isfamily":0}, {"id":"l29B2Z91598", "owner':"40002294EN00", "secret
":"4e0b340c0fE", “server":"lZSL", "farw":Z, "title":"Photo000_08ZE", “"ispublic':l, "isfriemnd":0, "isfamily":0), {"id"
1 "1298185654", "owmer":"2850137EENO0", "secret”:"64e42044£1", "server":"1118", "farm":2, "title":"alexander's house"
, "ispublic®:l, "isfriend":0, "isfamily":0}, {"id":"lZ98185696", "owmer":"ZEEDL3TEENOO", "secret”:"l84dEEElbO", ©

server”:"1351", "farm":Z, "title":'boston street”, "ispublic':1l, "isfriend”:0, "isfamily":0), {("id":"1257257511", °
owmer®:"31715349@N00", "secret”:"52dclz0235", "server":"1430", "farm":2Z, "title":"Tellow", "ispublic":1, "isfriend"
10, "isfamily":0}, {"id":"1297914E88", "owmer":"7S32Z3IEIENO0", "secret”:"fdE871eZB0", "server":"1l7S", "farm":Zz, "

AnJed AURADAASER s A hA hol ala ald s Srdend hod s A Anfamdd i Sl s Al Al AL AR AZE A . 4 hosreen bod RAGRARA ARMAR &, R 20T anel o b, 42

bl B T T T T TR VI T]

493

1/10/08 3:43:15 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

494 Part I1l: Advanced Topics

As you can see, this response performs its own callback, so to speak, by invoking
handleResponse (). This function then takes the passed object and creates the tags
to fetch the images of interest from Flickr.

function handleResponse (response)
var resultsDiv = $id("results") ;
resultsDiv.innerHTML = "";
if (response.stat == "ok")

var images = response.photos.photo;
for (var i=0;i<images.length;i++)

{

var image = images[i];

resultsDiv.innerHTML += "" + image.title + "
";

resultsDiv.innerHTML += "<img src='http://farm" + image.farm +
".static.flickr.com/" + image.server + "/" + image.id + " " + image.secret

+ " m.jpg' />

";

}

else
resultsDiv.innerHTML = "<h2>An error has occurred</h2>";

The complete code is shown next and demonstrated in Figure 10-3. A live example can
be found at http:/ /ajaxref.com/ch10/scriptflickr.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Flickr Web Service Search using Script-JSON</title>

<link rel="stylesheet" href="http://ajaxref.com/chl0/global.css" type="text/css"
media="screen" />

<script src="http://ajaxref.com/chl0/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript"s>

var flickrConfig =
method : "flickr.photos.search",
api_key : "dc-FAKE-KEY-HERE-GET-YOURS-250a",

safe search : 1,
per page : 10,
content type : 1,

format : "json",

jsoncallback : "handleResponse"

function search (searchterm)

if (searchterm == "")
alert ("You must enter a search term") ;
return;

ch10.indd 494 1/10/08 3:43:15 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 495

pter 10 Flickr Web Service Search using Script-JSON - Windows Internet Explorer I []
5@ =[] o fasasret.comjchiojscriptficls html =l 42| x| [cooge 2]
SF f @ Chapter 10 : Flickr Wb Ssrvics Search Using Stripk-1,., | | J - - = - b Page v (Of Took v

Flickr Search

Search Term: [San Dizge Zoo

@ HttpWatch [Chapter 10 [0 x|

@ record [stop fg] cear 5] wisw - 23 Summary () Find - 7 Fiter ~ [Save - .2) Help - 8
San Diego Zoo 007 Started | Time chart | Time | sent | Received [Method [Result Type ~ -
ey, +0.462 0.005 0 0 GET (fborted) ¥
+0.462 0,004 0 0 GET (Aborted) *
+0.463 0,003 0 0 GET (Aborted) *
+0.484 0.002 0 0 GET (oborted) ¥
+0.469 jes—] 0,623 413 26988 GET 200 image/fipeg
+0.469 e 0,582 413 23838 GET 200 imagefipeg
+0.470] 1,177 413 34188 GET 200 imagefipeg
+0.472 1 0,513 413 19426 GET 200 imagsfipeg
+0.472 . 0.524 413 20750 GET 200 imagefipeg
+0.473 | 0,989 413 25797 GET 200 imagefipeg
+0.474] 0,602 413 28070 GET 200 imags/fipeg
+0.475 0,468 413 15835 GET 200 imagefipeg
+0.475 0,461 413 19326 GET 200 imags/ipeg
+0.471 I G212 413 24135 GET 200 imagefipeg
+0.000 (W 0,331 588 2143 GET 200 textfplain; charset=utf
5,683 6040 241496 101 requ...
4| | »

Overview | Time Chart | Headers | Cookies | Cache | Query String | POST Dats | content Stream
2143 bytes received by 10,0.0,25:8990 C), Fird [B Export
HTTP/1.1 Z0O OE
Date: Sun, 0Z Sep 2007 00:04:48 GMT
Server: Apache/Z.Z2._4

e: cookie_ Ll ; expir , 01-Sep-10 00:04:48 GMT; path=/; domain=flickr.com
Sec—Cookie: cookie_intl=deleted; expires=Saturday, 02-Sep-06 00:04:47 GMT; path=/; domain=flickr.com
Content-Length: 1775
Connection: close
Content-Type: text/plain; charset=utf-8

handleResponse [{"photos”: {"page':1, "pages':3687, "perpage":l0, "total":"$6870", "photo®:[{"id":"1296161865", "

4 I i
611 requests ProfessionalEdtion 4

San Di Zoo 002
an “-Iggl) 00 j

Ficure 10-3 Using direct response from Flickr Web Service via <script> call

}

var url = ‘"http://api.flickr.com/services/rest/";
var payload = "text=" + searchterm;
payload = AjaxTCR.data.serializeObject (payload, flickrConfig,
"application/x-www-form-urlencoded") ;
var options = {method:"GET",
payload:payload,
transport: "script",
statusIndicator : { progress :
{type: "text", text: "Searching...", target: "progress" }}};
AjaxTCR.comm.sendRequest (url, options) ;

}

function handleResponse (response)

{

var resultsDiv = $id("results") ;
resultsDiv.innerHTML = "";

ch10.indd 495 1/10/08 3:43:16 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

496 Part Il11: Advanced Topics
if (response.stat == "ok")
{
var images = response.photos.photo;
for (var i=0;i<images.length;i++)
{
var image = images[i];
resultsDiv.innerHTML += "" + image.title + "
";
resultsDiv.innerHTML += "<img src='http://farm" + image.farm +
".static.flickr.com/" + image.server + "/" + image.id + " " + image.secret +
" m.jpg' />

";
}
else
resultsDiv.innerHTML = "<h2>An error has occurred</h2>";
}
window.onload = function () {
$id ("requestbutton") .onclick = function() {search($id('query') .value);};
$id("requestForm") .onsubmit = function() {return false;}
}i
</scripts>
</head>
<body>

<div class="content">
<hl1>Flickr Search: Script/JSON Version</hls

<form id="requestForm" method="GET" action=
"http://ajaxref.com/chl0/proxyflickr.php" name="requestForm" >
<label>Search Term:
<input type="text" name="query" id="query" id="query" value="Schnauzer"
autocomplete="off" size="30" />
</label>
<input type="submit" id="requestbutton" value="Search" />
</form>
</divs>

<div id="progress"></div>
<div id="results" class="results"s></div>
</body>
</html>

While the <script> tag does let us break the same origin policy, we should do so with
caution. As demonstrated in Chapter 7, untrustworthy sites can introduce problems even
with JSON payload responses. There is a somewhat inelegant solution using a number of
iframes often dubbed “subspace” that can be employed, but you will have to be quite careful
with testing to ensure a robust connection. We point readers back to the security discussion
(Chapter 7) for more information, but for now, since we have found one client-side focused
way to break the SOP, you might wonder if there are other approaches. But of course!

Flash Cross Domain Bridge

We saw that the <script> tag can break the same origin, but it turns out there is something
else that we could use that might be a bit more flexible to perform this action: Flash.
Generally people tend to think of Flash for animation, video, and various rich applications.
However, if you dig deeper into Flash you come to realize that it has a rich development

ch10.indd 496 1/10/08 3:43:16 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 497

environment complete with a number of useful communication features. For example, in
ActionScript you can load a document from a remote resource very quickly.

var myXML = new XML() ;
myXML.load (url); /* url contains the address we want to load */

However, don’t get too excited about breaking free of the same origin restriction; Flash
has calling restrictions as well. You can certainly try to put an arbitrary URL in this method,
but the Flash Player will first fetch a file from the root of the domain called crossdomain.
xml. This file sets up the access policy for remote requests from Flash. For example,

http:/ /unsecure.ajaxref.com/crossdomain.xml exists and contains the following rules:

<cross-domain-policys>

<allow-access-from domain="ajaxref.com" to-ports="*"/>
<allow-access-from domain="*.ajaxref.com" to-ports="*"/>
</cross-domain-policys>

This file indicates that other requests from ajaxref.com subdomains can make
connections remotely.

The syntax for crossdomain.xml files is quite basic. You have the primary tag <cross-
domain-policys> thatincludes <allow-access-froms> tags. These tags have a domain
attribute that is a full domain (for example, www.ajaxref.com), partial wild-card domain
(for example, *.ajaxref.com), or full wildcard (*). The secure attribute should be set to true; if
set to false, it allows Flash movies served via HTTP to attach to https URLs. The complete
DTD for the crossdomain.xml format is shown here.

<?xml version="1.0" encoding="IS0O-8859-1"?>
<!ELEMENT cross-domain-policy (allow-access-from*) >
<!ELEMENT allow-access-from EMPTY>
<!ATTLIST allow-access-from domain CDATA #REQUIRED>
<!ATTLIST allow-access-from secure (true|false) "true"s

As we remember, the same origin policy is quite restrictive, and we can’t even connect
from www.ajaxref.com to unsecure.ajaxref.com with an XHR. With Flash we will be able to
do it as long as we have a valid crossdomain.xml on the site we are trying to call, but how
does this help us since it requires Flash to be used? It turns out we can bridge calls from
JavaScript into a Flash SWF file and back again. Read over the following ActionScript file
(ajaxtcrflash.as):

import flash.external.ExternalInterface;
class AjaxTCRFlash(
static function connect (url, callback)
{
var myXML = new XML () ;
myXML. ignoreWhite = true;
myXML.onLoad = function (success)

if (success) {
ExternalInterface.call (callback, this.toString());

}
}i

ch10.indd 497 1/10/08 3:43:16 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

498 Part I1l: Advanced Topics

myXML. load (url) ;

}

static function main()

{

ExternalInterface.addCallback ("connect", null, connect);

}

You should, after your inspection, notice a connect () method that takes a url and a
callback that is invoked upon success. This method has been exported to an included Web
page as indicated by the line ExternalInterface.addCallback ("connect", null,
connect).

Now we need to convert this ActionScript into a Flash SWF file. Even if we don’t have
Flash, there are a number of ActionScript compilers on the Internet to do this. We compiled
the example using one called mtasc (www.mtasc.org/):

mtasc -version 8 -header 1:1:1 -main -swf ajaxtcrflash.swf ajaxtcrflash.as

The 1:1:1 makes the SWF file a 1px x 1px running at 1-frame per second movie. Our goal
here is a bit unusual for Flash, to be invisible and behind the scenes to the user.

Next, we take our created SWF file and insert it into the page. The syntax to do this for
plug-in-focused browsers like Firefox is primarily using an <embed> tag like so:

<embed type="application/x-shockwave-flash" src="http://ajaxref.com/
chl0/flash/ajaxtcrflash.swf" width="1" height="1" id="helloexternal"
name="helloexternal" />

Microsoft’s ActiveX component technology would prefer to see the Flash specified like
s0, using the <object> tag:

<object id="helloexternal" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="1" height="1" >

<param name="movie" value="http://ajaxref.com/chl0/flash/ajaxtcrflash.swf" />
</object>

Due to some unfortunate lawsuits regarding the use of binary objects within browsers,
we have to use script code to insert these elements lest we get a prompt to “Activate this
control” in the Microsoft browser. We create a simple function to do just that:

function createSWF ()
{

var swfNode = "";

if (navigator.plugins && navigator.mimeTypes && navigator.mimeTypes.length)

swfNode = '<embed type="application/x-shockwave-flash" src=

"http://ajaxref.com/chl0/flash/ajaxtcrflash.swf" width="1" height="1"
id="helloexternal" name="helloexternal" />';

else { // PC IE

swfNode = '<object id="helloexternal" classid="clsid:D27CDB6E-AE6D-11cf-
96B8-444553540000" width="1" height="1" >';
swfNode += '<param name="movie" value="http://ajaxref.com/chl0/flash/

ajaxtcrflash.swf" />';

ch10.indd 498 1/10/08 3:43:16 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 499

swfNode += "</object>";

}

/* put the Flash reference in the page */
document .getElementById ("flashHolder") .innerHTML = swfNode;

}

NoTE Insertion and manipulation of Flash movies is filled with all sorts of little details. Many
developers rely on scripts like SWEQbject (http://blog.deconcept.com/swfobject/) to perform such
tasks. Our point here is demonstration, and the approach taken should work for most readers.

Once our communications SWF file is inserted into the page, we find the Flash movie
and then use its externally exposed connect () method to make our call to a URL and
specify the callback we want to use. Of course, nothing can be the same between the
browsers. We see accessing the SWF object is a bit different, so we write a little function to
abstract that as well:

function getSWF (movieName)
if (navigator.appName.indexOf ("Microsoft")!= -1)
return window [movieName] ;
else
return document [movieName] ;

flashBridge = getSWF("helloexternal") ;

Finally, after getting a handle to the Flash object we issue the request:

flashBridge.connect ("http://unsecure.ajaxref.com/chl/sayhello.php ",
"printMessage") ;

This will later call printMessage and show us content from another domain! Figure 10-4
shows the demo at http://ajaxref.com/ch10/flashajax.html breaking the same origin policy.
The complete code that enabled this is shown next for your perusal.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Breaking SOP with Flash</title>
<script type="text/javascript"s>
function createSWF ()
{
var swfNode = "";
if (navigator.plugins && navigator.mimeTypes && navigator
.mimeTypes.length)
swiNode = '<embed type="application/x-shockwave-flash"
src="http://ajaxref.com/chl0/ajaxtcrflash.swf" width="1" height="1"
id="helloexternal" name="helloexternal" />';

else {
swfNode = '<object id="helloexternal" classid=
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="1" height="1" >';
swfNode += '<param name="movie" value=

ch10.indd 499 1/10/08 3:43:16 PM

300

ch10.indd 500

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

"http://ajaxref.com/chl0/ajaxtcrflash.swf" />';
swfNode += "</object>";
}

document .getElementById ("flashHolder") .innerHTML = swfNode;

}

function getSWF (movieName)

{

if (navigator.appName.indexOf ("Microsoft") != -1)
return window [movieName] ;

else

return document [movieName] ;

}

function printMessage (str)

{

document .getElementById ("responseOutput") .innerHTML = str;

}

window.onload = function/()

{

createSWF () ;
document .getElementById ("helloButton") .onclick = function() {
var flashBridge = getSWF ("helloexternal");
flashBridge.connect ("http://unsecure.ajaxref.com/chl/
sayhello.php", "printMessage"); }

</scripts>

</head>

<body>

<form action="#">

<input type="button" value="Say Hello" id="helloButton" />
</form>

<div id="flashHolder"></div>

<div id="responseOutput"> </div>
</body>

</html>

You may want to note a couple of items in Figure 10-4. First, you can clearly see the
fetch for the crossdomain.xml file before the request is invoked. Second, the continuous
status message presented to the user when Flash remoting is used, which might be a bit
disconcerting to users.

The Future: Native XHR Cross Domain Access

In the very near future, maybe even as you read this, it is quite likely that browsers will
more commonly break the same origin policy (SOP) and boldly go where no XHR has
gone before. Early versions of Firefox 3 include the first attempt at native XHR cross-
domain access and have implemented the emerging W3C standard for cross-site access
control (www.w3.org/TR/access-control/). Following this specification to enable cross-
site access, the resource in question has to issue an access control header in its response.

1/10/08 3:43:17 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

¥ chapter 10 - Breaking SOP with Flash - Mozilla Firefox

~=1oix

File Edit View History Bookmarks Tools Help i
@ - :> - @ w @ ||:| http:ffajaxref. comfch10/flashajax. heml |'| D] |"Google |L-\l
Say Hello |

Hello World from the unsecure ajaszref to user from 63.210.161.190 at 05:49:32 PM

-&' Inspect Clear |W HTML €55 J5 XHR Images Flash o,
Console HTML (S5 Script DOM | Net | YSlow

flashajax.html
ajaxtcrflash.swf

Crptions

ajaxref.com 2 KB 3ms
ajaxref.com 600 b 3lms
crossdomain.xml nsecure, ajaxref,com1g3b | Oms

= sayhello.php unsecure, ajaxref,com152 b s

Headers Response

“?xml wersion='l.0' encoding='UTF-8'7Tr<message id='messagel'rHello World frow the unsecure ajaxref to
user from ©3.210.161.190 at 05:45:32 PM</messager

4 requests 3KB (600 b from cache) 156ms

‘ Transferring data from unsecure. ajaxref.canm...

© [Bvsow ooms

Ficure 10-4 Flash going where many XHR implementations fear to tread!

This is somewhat similar to crossdomain.xml but a bit more granular since it can be used
on a file-by-file basis. For example, we might issue a header in our response like:

Content-Access-Control: allow <*>

This says the resource can be attached by anyone from any domain. To be a bit less
permissive, we might limit it to requests from a particular set of domains with a response
like so:

Content-Access-Control: allow <ajaxref.com>

or even limit it to requests from a particular set of domains with exclusions:

Content-Access-Control: allow <ajaxref.com> <*.ajaxref.com> exclude
<unsecure.ajaxref .com>

If the content items are generated, it is fairly easy to set these kinds of rules, but if we
are serving static files it might be a bit difficult to get them in place. You would likely have
to put the remotely accessible files in a particular directory and then set rules on your Web
server, for example using Apache’s mod_headers. However, the current specification does
provide one instance where that is not the case, serving XML files. In this case a processing
directive can also be used to specify the same kind of rule.

<?xml version='1.0' encoding='UTF-8'?>
<?access-control allow="*"?>
<packet>

<message id="messagel">To boldly go where no XHR has gone before.

. .</message>

</packet>

ch10.indd 501

301

1/10/08 3:43:17 PM

302

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

From a coding point of view there really isn’t anything to go client side. We should be
able to issue a request as we normally would.

var url = "http://some-other-site-that-allows-remote-access/servicecall";
var options = {method:"GET",

onSuccess : handleResponse};
AjaxTCR.comm.sendRequest (url, options) ;

Unfortunately, as we test this, we note that the way it is handled is currently incompatible
with not only our library, but also with other libraries like YUI and Prototype. It is quite likely
that wrapping the XHR invalidates the request as they may be considering XHR hijacking.
However, it is also quite likely that this is simply very alpha technology. However, going back
to our Chapter 3 knowledge we can do things manually like so:

var xhr = new XMLHttpRequest () ;

xhr.open ('GET', 'http://unsecure.ajaxref.com/chl0/sayhello.php', true)
xhr.onreadystatechange = function () {handleResponse (xhr)};

xhr.send (null) ;

This will work just fine, as shown in Figure 10-5. When you are armed with the Firefox 3
browser, check the example at http:/ /ajaxref.com/ch10/crossdomainxhr.html to see if you
too can break the SOP!

SOAP: All Washed Up?

If you are a Web Services aficionado, you might get a whiff of RESTful bias here, given all
the examples presented up until now. Certainly SOAP (Simple Object Access Protocol) has
been practically synonymous with Web Services in the past, but that does not seem to be the
case for public-facing Web Service APIs. In fact, fewer and fewer of them seem to be
supporting SOAP (see the upcoming section “Sampling Public Services”), probably due to
complexity and the lack of native browser implementations. Interestingly on that front, the
most notable SOAP-aware browser, Firefox, appears to be planning to remove SOAP from
its 3.0 release. Does this mean that SOAP is all washed up, at least in terms of end-user Web
Service use? Actually no, if we consider that SOAP is just an XML format. Why couldn’t we
use JavaScript to make the packet and then use standard Ajax to make the call?

SOAP can easily live on within an XHR-powered world. For example, notice in the
following example how we manually make a SOAP packet, stamp the correct content type
on it, and send it on its way to a SOAP service.

function sendRequest ()

{

var url = "http://ajaxref.com/chl0/soapserver.php";
var payload = '<?xml version="1.0" encoding="UTF-8"?>"' +

'<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.

xmlsoap.org/soap/envelope/""' +

'xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""' +
'xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-in-

stance"' +

'xmlns: SOAP-ENC=

"http://schemas.xmlsoap.org/soap/encoding/""' +

ch10.indd 502

1/10/08 3:43:17 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10:

Web Services and Beyond

* Chapter 10 : Experimental Cross Domain XHR Requests - Gran Par: =] |
File Edit Wiew History Bookmarks Tools Help
@-5- @ & ﬁ} [(] hitp:ffalaref comfch10fcrossdomarwdr. il =L &) [[Cl] sooe &

303

Cross Domain XHR Test

Raw Results
<Purnl version=".0' encoding="UTF-8'?><massage id="messagel>Hello Warld from the unsecure ajaxref to user from
£3.210.161.190 at 12:22:27 PM</message>

Processed Results
Hello World from the unsecure ajaxref to user fram 63.210.161.190 at 12:22:27 PM

| s Fiddler- WTTP Debugging Prowy g 1=
Eile Edt Rules Tools View Help
HTTP Sessions Perfarmance Statistics Session Inspector | AutaRespander | Request Buider |
ey | Graltes] Headers | Textview | Forms | Hex | Auth |[Raw | am |
GET /:hin/;ayheﬂn php H‘rrP/l i -
unsecure. ajaxret. co

Uoer-agents anﬂ1a/5 u (w1nnnws, U; Wi ndows T G028 RS

rvi1.5a7) Gecko,zZ007080210 GranFaradiso,/3.0a

pieens text/html , appTlication/xhem sxml apphtannn/xm],q—n 9,5/
8

AEEEpt Language: en-us,en; q—D 5

laccept-Encoding: _gzip,defla

lAccept-Charset: IS0-8855-1, e 8;0=0.7, *;q=0.7

Keep-alive: 300

Pruxy{unne:nun keep-alive
8 B

H Coyute s dlfS?SCD—aClDUUbb -

Transformer | Headers | TextYiew

privacy |[Raw | ¥l |

HTTP/1.1 200 OK
pate: sun, 02 sep
: Apache/z.2.2 [unix) mod_: ss'\/z 2.2 DpenssL/0.9.7a DAV/2
Content-access-control: allow <>

Icache-Control: no-cache

Fragma: no-cache

content-Length: 152

iContent-Type: tExt/xm'I charser=urf-g

x-Pad: avald browser

set-cookie: Coyote-z- d1f579:n ac1000bbi 0; path=/

Dane

| viewin Notepad |

Inageview | Hex | Auth | Caching |

2007 19:22:27 GM

<7ml wersion='1.0' encoding='UTF-&'?><message id='messagel'sHello
World from the unsecure ajaxref to user from 63.210.161.190 at
1z:22:27 PMo/messages

Capturing | 11 unsseure. ajaxref comich10/sayhello.php 4

| viewin Notepad |

Ficure 10-5 SOP busted natively!

'xmlns:ns4="urn:helloworld"' +
'SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">"' +
'<SOAP-ENV:Body>' +
'<ns4:helloworlds>' +
'</ns4:helloworlds>' +
'</SOAP-ENV:Body>' +
'</SOAP-ENV:Envelope>';
/* define communication options */
var options = { method: "POST",
onsSuccess handleResponse,
requestContentType: "text/xml",
payload: payload

7

AjaxTCR.comm. sendRequest (url,options) ;

ch10.indd 503 1/10/08 3:43:18 PM

504

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

The service handles our “helloworld” call and responds with our favorite welcoming
message via a SOAP response.

<?php

n

function helloworld()

return "Hello World to user from " . $ SERVER['REMOTE ADDR'].
at ". date("h:i:s A");

}

$server = new SoapServer (null, array('uri' =>
Sserver->addFunction ("helloworld") ;
Sserver->handle () ;

"urn:helloworld")) ;

Back on the browser we then receive the packet and parse it putting the payload in
the page.

function handleResponse (response)

{

var result = response.responseXML.getElementsByTagName ("return")

$id("responseOutput") .innerHTML = result[0] .firstChild.nodeValue;
}

The operation and network trace of this SOAP example is shown in Figure 10-6, and the
example can be found at http:/ /ajaxref.com/ch10/soapclient.html.

¥JChapter 10 - SOAP Web Service - Mozilla Firefox [_[O[x]
Fle Edt View Higtory Bockmarks Tools Help
G- - @) (5} (O it comjehtnfsospelert.hti =1 B [Clz/asone <]

Make SOAP Request

Send

Hello World to user from 63.210.161.150 at 084517 PM

%" Tnspect Clear |[Al HIML €SS 05 MR Images Flash Y ()]
Options ~

Console HTML €SS Script DOM | Net | Yslow
soapclient.html ajaref com 2K8 16ms
ajarter.js apasref com 108 KB 0
template.js ajaref com 21K 31ms
= soapserver.php ajasref,com St3b s
Headers | Post Response
<?uml version="1.0" encoding="UTF-8"7><S04P-ENV: Envelope ymlns:SO0AP-ENW="http://schemas. xnlsoap. org
fsoap/envelope/"xmlns: xsd="http: //www. w3. org/Z001/XMLSchena " xulns: xsi="http: //www. w3. org/Z001/XHMLSchena-instance"xnlns
$SOAP-ENC= "Bttp: f/5chenas. XiLsoap - 07§/ S0P/ SNcoding, ¥ulns: ned= "urn: hellowor 1a" SDAP-ENV: encodingstyle
='hop: //schenas. mulsomy. ora/soap/ eneoding "> <E0AP—ENV: Bodyrens4: hellowor 1dr/nsd: helloworLds</S0AP-ENV
“Body~</E0AP-ENV: Enveloper
Headers Post Response
<2xnl version="1.0" encoding="UTF-8"2>
<804P-ENV: Envelope xnlns:S0OAP-ENV="http://schenas.iulsoap. org/soap/envelope/" ¥mlns:nsl="urn:helloworld”
xmlns:xsd="http: //www. w3 org/Z00L/XMLEchena" xmlns:xsi="http://www.w2.ory/2001/XMLEchena-instance"” xmlns
ISO0AP-ENC="http: //schemas. Xnlsoap. org/soap/ " SOAP-ENV: le="http://schenas. xulsoap
Torg/saaps *><EOAP-TIV: L:helloworl, K=1:bypasxsd: string*>Hello World
to user from §3.210.161.190 at 09:45:17 PM</return<¢nsl:helloworldBesponses</S0AP-EHV:Body></S0AP-ENV
:Envelope>
4 requests 131KB (108 KB from cache) 265ms
| Dane [& [B& vsow o

Ficure 10-6 SOAPy Ajax request

ch10.indd 504

1/10/08 3:43:18 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 505

No doubt the communications process could be abstracted so that you could form
SOAP packets more programmatically in JavaScript, but our point here is simply that Web
Services using SOAP can certainly live in the world of Ajax.

Screen Scraping

Sometimes public sites don’t provide clear APIs for programmers. In these cases, developers
interested in using the data or services provided by the site resort to an idea called screen
scraping. The basic sense of screen scraping is to browse the site literally as a normal human
browser would, fetch the HTML and other resources, and then extract the pieces of interest
to use in their own way—for good or for ill.

(4]0] 2

Request

v

Web Browser
Extracted Content

&

! Price $5.00

Web Server
(ajaxref.com)

-

Price $5.00

Fy

Remote Server
{ non-API)

To use a simple example, let’s issue a query at Google:

¥ screen Scraping - Google Search - Mozilla Firefox

Elle Edit “ew Higtory Bookmarks Tools Help
@ - @ = @ %} @ ‘ http:) fwwin.google. comfsearch?hl=en&n=>5Screen+Scraping&btnG=Google+Search
Web Images Video MNews hdaps Gmail more ¥

Google [Screen Serzaing _Semcn | st suast

Web

Screen Scraping Too
w2 com Anonymous, Automatic & Reliable. Download 45-Day Free Trial Now!

Why st sereen scrape?
wheery. seagullsoftware. com Integrate with screens, transaction & databases. No messy macros

Screen scraping - Wikipedia, the free encyclopedia

Screen scraping is a technigue in which a computer program extracts data from the display
output of another pragram. The program doing the scraping is ..
en.wikipedia.org/iwiki/Screen_scraping - 34k - Cached - Similar pages

Web scraping - Wikipedia, the fres encyclopedia

YWeb scraping differs from screen seraping in the sense that a website is really not a visual
screen, but a live HTMLU avaScript-based content, ...

en.wikipedia. orghwikiMeb_scraping - 28k - Cached - Similar pages

AAAAAAAARAAAAAAAASAAAAAAAALALALANALALAsssnlalsalalan

Mlebweoranine sofbeacs Aak RAIC SR LRGSR RSO AR AT NI A & & &b & A s & & &5 & &S & & &S & b

ch10.indd 505 1/10/08 3:43:18 PM

306

Sdom

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

and then inspect the query string:
http://www.google.com/search?hl=en&g=Screen+Scraping&btnG=Google+Search

It is clear from this that we change the query easily enough to the more technically
appropriate term “Web Scraping,” like so:

http://www.google.com/search?hl=en&g=Web+Scraping&btnG=Search

Since that is all we need to do to alter a search, it would seem we could automate the
trigger of a Google search quite easily. For example, in PHP we might simply do:

Squery = "screen+scraping"; // change to whatever
Surl = "http://www.google.com/search?hl=en&g=Squery&btnG=Google+Search";
Sresult = file get contents (surl);

Now in $result we are going to get a whole mess of HTML, like so:

<html><head><meta http-equiv=content-type content="text/html; charset=UTF-8">
<title>Screen Scraping - Google Search</title><style>div,td,.n a,.n a:
visited{color:#000}.ts

snip

<div class=g><!--m--><link rel="prefetch" href="http://en.wikipedia.org/
wiki/Screen scraping"><h2 class=r><a href="http://en.wikipedia.org/wiki/
Screen scraping" class=1 onmousedown="return clk(0,'','','res','1l',"'")">
Screen scraping - Wikipedia, the free encyclopedia</h2><table bor-
der=0 cellpadding=0 cellspacing=0><tr><td class="j">Screen
scraping is a technique in which a computer program extracts data from
the display output of another program. The program doing the scraping

 1is ...
en.wikipedia.org/wiki/Screen
scraping - 34k - <nobr>
...snip...

We could try to write some regular expressions or something else to rip out the pieces
we are interested in, or we might rely on the DOM and various XML capabilities available.
Most server-side environments afford us better than brute force methods, so we instead
load the URL and build a DOM tree.

= new domdocument;

/* fetch and parse the result */
Surl = 'http://www.google.com/search?hl=en&g=screen+scraping&btnG=Google+Search';
@$dom->loadHTMLFile (Surl) ;

ch10.indd 506

Then we take the DOM tree and run an Xpath query on the results to rip out what we
are interested in, in this case some links. After having inspected the result page, it appears
that the good organic results have a class of “1” (at least at this point in time), so we pull out
only those from the result.

/* use xpath to slice out some tags */
Sxpath = new domxpath ($dom) ;
$nodes = $xpath->query('//aleclass="1"]");

1/10/08 3:43:18 PM

ch10.indd 507

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Finally, we print out the resulting nodes to our own special results page without ads
and other items:

/* print out the tags found */

print "";

foreach ($nodes as $node)

{
SresultURL = Snode->getAttribute('href');
if (SresultURL != '"'")

echo "<lis>$resultURL";
}

print "</uls>";

?>

We can see the working result here:

) screen Scraping - Google Search - Mozilla Firefox
Eie Edt Wien Hstory Bookmarks Took Help

G- - @ L (G et googe och ls=org.moila iochan

Web |mages ‘ideo MNews Maps Gmail more v

Scraped to populate G()ogle o s [N

Prefarenses

Web
Fetch Technologies
wunw fetch com Real Time Web Data. Extract, Aggregate and Clean All Web Data

Screen Scraping
Eile Edt Wiew Hstory Bookmarks Tools Help wrirw.seagullsoftware.com

¢ @LRE

3 Chapter 10 - Scrape away! - Mozilla Firefox

True screen-based integration for legacy platformms w/ screen metadata

Screen scraping - Wikipedia, the free encyclopedia

Screen scraping is & technigue in which a computer program extracts data from the display
output of anather program. The pragram daing the scraping is ...

en.wikipedia. orghwiki/Screen_scraping - 34k - Cached - Similar pages

Scraped from Google

Wileb scraping - Wikipedia, the free encyelopedia
\eb scraping diflers from screen scraping in the sense that 3 website is really not visual
mplsilge o o b screen, but a live HTMLAJavaScript-based content, ...
+ hitpdfen wiip edia orgfwiki/Web_seray enwikipedia. orewikiAW/eb_scraping - 28k - Cached - Sirilar pages
+ hitp ffurray screen- com
+ bty ffurvene.cath orgl—esr! screen- el .

WWeb scraping software and services | screen-scraper.com
+ bttt vz cotn/~dieublman/ quizots htrnl b
+ bty o dalkescientific. i 2005/

screen-scraper peforms data extraction on web sites. Il is a form of web scraping software
e S for doing web data mining, web scraping, and automated data ...
L v screen-scraper.com/ - 13k - Cached - Similar pages
* bty dfwrwrw. A guyefremrella. comiwebtech/070601-1 ehtrnl
 hitp b 4 1

cormy {Tip.aspxTarticle[D=210 screen scraping
* hitpafs ibility org/bil tool 2

i in sither guise screen-scraping is an ugly, ad-hoc, last-resort technique that is very fikely to
break on even minar changes to the format of the data being ...
. cath, org/~estjargon/html/Sisereen-seraping. html - 3k - Cached - Similar pages

+ http:/fmsdn microsoft. ! 01/01fweb/

TML Screen Scraping: A Howi-To Docurnent

This document explains how ta do HTML screen scraping. In effect it shaws how to treat the
Web as & resource by enabling you to retrieve and extract data ...

wnw.rexx comf~dkuhlman/quixote_htmiscraping. html - 36k - Cached - Similar pages

Screen scranina
Dane:

Note we don’t give a URL for you to try because, frankly, the demo is likely to fail
sometime in the very near future, especially if Google changes its markup structure or they
ban us for querying too much.

Scraping is fragile, and scraping grab content or mash-up data that is not to be used
without surrounding context is certainly bad practice. However, the technology itself is
fundamental to the Web. We need to be able to automate Web access, for how else would
Web testing tools work? We present the idea only to let you know that scraping might be a
necessary evil to accomplish your goals in some situations.

If after reading this you are concerned about scraping
against your own site, the primary defense for form-based
input would be a CAPTCHA (http://en.wikipedia.org/
wiki/Captcha) system, as shown here, where the user types
the word shown into some text box for access:

307

1/10/08 3:43:19 PM

308

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

Of course, as this example shows you need to balance what is difficult for a bot to solve
with what a human can actually read.

When trying to protect content it would make sense to try other schemes such as
randomization of markup structure including id and class values. You might even decide
to put content in less scrapable formats for example putting textual content in a binary.
Ultimately though, content wise if the user can view it, they can get it and can likely
automate it. To keep out automated content scraping, you would just have to monitor for
the frequent access from set IPs and then ban any bot command hooligans who start
abusing your site or application.

Sampling Public Services

ch10.indd 508

In this section we take a brief moment to review public Web Services available when this
book was written. The goal here is not to present a cookbook of usage. Very likely you will

need to visit the services in question for the latest information on syntax and access policies.

Rather, our goal in showing a few examples is to illustrate the range of possibilities, as well
as the typical logistic and technical requirements that will be faced when dealing with
public Web Services.

The first services explored are the Google APIs for search feeds and maps. Information
about each service can be found at http://code.google.com. The first example shows a
simple version of the Google Search API to load in a simple query box that will retrieve
search results in page, Ajax style.

¥ chapter 10 - Google AJAX Search API Google Parsed - Mozilla Firefox

File Edt ‘Wiew History Bookmarks Tools Help

<f_:| 52 _‘/ G @ A | ﬁ_l‘ ||:| http: {fajaxref .com/chi0fgooglesearchauto, html

Google Search API - Automatic

Schnauzer Search | *x

povrered by Go\sglt'“

e

Mliniature Schnauzer - Wikipedia, the fiee

The Miniature Schmauzer is a breed of small dog
of the Schnanzer type that originated in Germany
i the mid-to-late 19th century. ...

en wilkipedia org

Standard Schnauzer - Wikipedia, the fiee

The Standard Schnauzer is the original breed of
the three breeds of Schnauzer, and despite its
wity coat and general appearance, i3 not related
to the ...

enwikipedia org

Toy Schnauzers and Miniature Schnauzers for
Sale. Home raised with love and attention. Black,
Black and Silver, Salt and Pepper, Silver, White,

www. schnanzerlover. com

P R R W P U W AU PP ap ap W W AP ary papaapapapa | e

A, S5y, T e i TR i b,

1/10/08 3:43:19 PM

<

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Now let’s see how this works and why we said “Ajax style.” First, we note the inclusion
of a <scripts> tag in our example page with an API key.

IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Chapter 10 - Google AJAX Search API Google Parsed </title>

<

<

Do not use this Google API key as it only works on this site
and in this directory.

->
script src="http://www.google.com/jsapi?key=ABQIAAAA6939307mANW

7Z8yPE9m] 1hT87Zy2LdSAMVK IWP23 IfaHiwArBSqulth_nGVfHT7 ZJ_ycmO7Dj CQ" type=
"text/javascript"s</scripts>

Like most public Web Services, to avoid abuse Google makes you register for an access
key to use their services. What is interesting about this call is that it is also a bootstrap
mechanism that is loading in the script that powers this facility.

ch10.indd 509

T hautehtml janref com ZKB 15ms
= jsapi google. com 2KB 63ms
Params Headers Response

if (lgoogle) {

var google = {};

¥

if {lgoogle.loader) |

google. loader = {};

google. loader. ServiceBase = 'http://www. google. com/uds’ ;

google.loader. ApiKey = 'ABQIAAAAG939307nAl_722yPESm) LhT872yZLASAMVE IUP23IfaHivArBSyoClt £Q_nGVEHT7Z]_yem07D3icQ’

google. loader KeyVerified = true;

google.loader. LoadFailure = false;
google. loader. AdditionalParans = '';
google.loader. OriginalkppPath = ‘hetp://ajaxref.con/chl0/googlesearchauto. html';

{functioni) {

Function.prototype._ google inherits=functionic) {var a=functionil{}

;a.provotypesc.prototypesthis. provotypesnev a;this.prototype. gooyle super=function(b,d,s,h) {var l=irray
_prototype.3.spply{argquments, [1, arqunents. length]) jreturn b.apply{this, 1)}

¥

svar i={};var k=null;var o=false;var w={};var g=0;function ji{c){this.a=c}

j.protonype. o= funetion(o,a) {var h="";if (al=undefined) {if (a["lorale"] ! =undefined) {b+="shl="+encodeTRICouMs onent.
{a["locale”]}}if{al"nocss"] | =undefined) {b+="4Soutput="+encodelURIComponent ["noess="+a["nocss" 1] }if(a["callback”
11=undefined) {var d=r(al"callback"],qt+) ;b+="scallback=" IC (d)}iftal"other params"]!
=undefined) {b+="s"+al"ovher params"]}}ifik!=nullssle) (b+="skey="+encodeURICouponent [k} ;o=trusrevurn

google. loader. ServiceBase+" /1 file="+this. at"iv="+ctgoogle. loader AdditionalParams+

by
;j.provotype.e=function() {reurn trus}
;function wie,a,b,d, e h, 1) (this.a=c;this.i=a;this heh;this d=d;vhis. f=e;vhis.g=h;this.b=1}

g.__google_inherits{j);g.prototype.c=function(c,a) {var b="";if{this.d!=undefined) {b+="5"+this.d+"="+encodeURIComponent
(k7k:google. loader. hpiFey) }if(this. £|=undsfined) {b+="s"+thiz. £+"="+encodsURIComponent (o) }ifial=undefined
sathis.b!=undsfined) {for (var d in a){if(this.b[":"+d]|=undefined) {b+="5"+chis.b +d]+"="+encodeTRICouponant
{ald])}else if{d=="other_params"}{b+="&"+a[d]}}}google[this.a]={};if{!this. hitb) {b="1"+h_substring
(1) }return this.ith}
sg.provotype. e=functioni) {revurn this.g}
function sle,a,b){var d=i[":"+e];if{!d) (chrow n{"Module: '"+ct"' not found!"};jelse{if{!google(c]] {var
eshash["callback"]!=mill;if{esstd. e{}) {throw n{"API: '“+o+"' must be loaded before DOM onLoad!");}else
ipl'scripe” ,d.cia,b),e)}}}}
A, By S, A AT s A, i e e i A i A e R

AAAAAAASALLLAAAALLLAASALALLALSALSLLLSALLLLLSALLLL IS Slsss

309

1/10/08 3:43:19 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

510 Part I1l: Advanced Topics

That isn’t the only file we see; others are pulled in as well during the process:

jsapi ‘google.com ZKB B3ms
uds google.com 4KE 78ms
= search.64f3d95770deabbc google.com 17 KB 141ms

Headers Response

(funceioni) {
google_sxportSynbol("UDS_ServiceBase®,google. loadsr. ServiceBass);gocgle _sxportSvubol (*UDS_OriginalippPach®
,gocgle. Loader . OriginalAppPath] ;gooyle_exporcSymbol ("UDS_ApiKey",google. loadsr. ApiKey] ;gooyle_enporcSymbol
("UDS_KeyVerified",google.loader.KeyVerified) ;ygoogle_szportSyubol ("UDS_LeadFailure®,geogle. loader. LoadFailure
) ;geogle_exportSyubol ("UDS_CurrentLocale”,yoogle. search. Currentlocals) ;geogle_exportSynbol ("UDS_ShorcDatsFattern®
,geogle. search. ShortDatePattern] ;google exportSymbel ("UDS_Version',
google.s=arch.Version! ;google_sxportSyubol {"UDE_JSHash",google.s=arch. JSHashi ;
war i=new Object;il"blank"]="eubsp;";i["image"]=_UDS_MSE_SEARCHER_IMAGE;il'web'l=_UDS NSG_SEARCHER_UEB
#il"blog"]=_UDS_MSG_SEARCHER_BLOG;i["video"]=_UDS_N3G_SEARCHER VIDED;il"local']l=_UDS NSG_SEARCHER_LOCAL
Sn A R e A, MDA IECARER MR RES HFTIR, & M adodl A, SUAG IEEG AR A BCHRDA PR 1 & e suenos! Ao, SIS MEG ASEA RCHAINRBOR SATIES A A A& A& &L AAAAASLLLLLALAALLLLLLSLLAN L

AAAAAAAAAALSAAALLDLLLS

What's interesting here is Google’s approach of creating a generic loader so they can
pull in new versions of code quite easily, rather than having the user point to some new
filename.

Now client side, you must add some code to enable the Google search but it is pretty
minimal. We load the Google search service, instantiate and add a google.search.
SearchConrol object to the page, define some parameters, and make sure to bind it to a
<div> element in our layout.

<script type="text/javascript"s>

google.load("search", "1");

window.onload = function ()
var searchControl = new google.search.SearchControl () ;
var options = new google.search.SearcherOptions() ;
options.setExpandMode (google.search.SearchControl .EXPAND MODE OPEN) ;
searchControl .addSearcher (new google.search.WebSearch(), options);
searchControl.setResultSetSize (google.search.Search.LARGE RESULTSET) ;
searchControl.draw (document .getElementById ("searchcontrol")) ;

Vi

</scripts>

</head>

<body>

<hl1>Google Search API - Automatic</hls>

<hr />
<div id="searchcontrol"sLoading...</div>

</body>

</html>

And now we have an in-page Google powered search box (http://ajaxref.com/ch10/
googlesearchauto.html). Yet this isn’t Ajax powered in the strict sense of an XHR. In fact, if
you try the other services Google offers like Maps (http:/ /ajaxref.com/ch10/googlemap
.html) and the RSS feed reader (http:/ /ajaxref.com/ch10/googlerssreader.html), you'll see
the same thing;:

ch10.indd 510 1/10/08 3:43:20 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

1ol x]
File Edit Wiew History Bookmarks Tools Help {:}
@ - @ - @ l@ @ ||:| http: ffajaxref .comichi0/googlerssreader, html |" D] |'|G00gle |L-\§]
Ihttp',.",."apons espr.go.com/espnirssimib/news Get Feed
Headlines
o Lawe Most intriquing September callbups
e Ankiel defends himself on HGH report
* Last-place Pirates fire GM Littlefield
* Report: Pharmacy shipped Glaus steroids by mail
9 Chapter 10 : Google Maps API - Mozilla Firefox 1ol x|
File Edit Wew History Bookmarks Tools Help {:}

Google Map Service

Address: IDisneyIand Anaheirn, Califarnia ‘Search:

Done

B=E
| ol @207 Teke 2

| Done v |—E Yolow 06255

The situation will be no different for other public Web Services found. If you are looking
for direct consumption in a client, it will almost certainly be JSON or script responses
invoked by <script»> tag insertions and not using any sort of XHR mechanism given their
same origin restrictions. Besides Google, you will find all sorts of services from sites like
Yahoo, eBay, Amazon, and many others. A very complete list of Web APIs can be found at
www.programmableweb.com/apis.

Mash-ups
With all these various Web Services providing interesting data online, it would seem we
could build valuable aggregates by combining and correlating data fetched from various
services into a new page. This concept is what is popularly termed a mash-up. Now, as we

ch10.indd 511

a

1/10/08 3:43:20 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

512 Part Ill: Advanced Topics

have seen with our exploration of Web Services and Ajax, we will very likely use a proxy to
fetch data, so the actual mashing will likely occur on the proxying server.

Request
—
Web Server
5 (maps.google.com)
) +
Request Request
i > « »
*] Web Server
Web Server (flickr.com)
Request
Web Server
(craigslist.com)
Using a proxy

Of course, given the possibility of using <script> tags with JSON responses for direct
access, it might be possible to do an in-browser mash-up as well.

Request

Web Server
(maps.google.com)

<+
Request

< aue >

“ Web Server
(flickr.com)

Web Browser Request
e
Web Server

[craigslist.com)

Direct using script tag or other mechanism

ch10.indd 512 1/10/08 3:43:20 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 513

It is also possible to use combinations of direct <script> calls and proxy calls.

As an example, we built a simple mash-up that allows you to type in an address. It
fetches a map from Google Maps and combines the data with the local Starbucks in your
vicinity in case you are in dire need of corporate caffeine. In the version at http:/ /ajaxref.
com/ch10/mashupproxy.html, it pulls the data from Google Maps directly via a <script>
tag approach but uses a PHP proxy to fetch the store location via a Web scrape and then
combine them together.

JChapter 10: Google Maps APT - Mozilla Firefox

File Edit Wew History Bookmarks Tools Help

é - » b2 @ @ m ||:‘l http: fiajaxref, comfch10fmashupprasy. html |§|ﬂ Google 4

Starbucks Locator

Street: l—
City: l—
State: l— Zip: IW
Search |

b b b b b o b

S
Matural
g

ch10.indd 513 1/10/08 3:43:21 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

B14 Part Ill: Advanced Topics

In the second version at http:/ /ajaxref.com/ch10/mashupscripts.html, we pull our data
using a <script> call to Google and Yahoo and then combine the two.

JChapter 10: Scripts Mashup - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

¢ - * - @ @ @ ||:‘| http:ftajaxref .comfchl0fmashupscripts, html |ﬁjé] Google

Starbucks Locator using no Proxy

Street: I
City: I
State: I Zip: |92109

Anlala o

eul
< l!rllil 4

The code for either example is more busy work than complex. Mash-up code mostly
involves fetching data in a variety of ways, translating data from one format to another, and
then combining the interesting items. Given the consistency of approach, a number of efforts
have been made to build visual mash-up creation tools. For example, http:/ /pipes.yahoo.com,
as shown in Figure 10-7, is used to create a simple mash-up that reads a number of popular
Ajax news source sites and then provides a query mechanism against the stories.

While making mash-ups can be fun, we encourage you to look at mash-up making
systems or simply look at the list of existing efforts, as it is very likely the combination of
data or something quite similar has been done before.

Comet

For a more continuous connection to the server in order to keep the client up to date, an Ajax
application must rely on a polling mechanism to make requests to check status at regular
intervals. This approach can be quite taxing on server and client alike. For irregularly

ch10.indd 514 1/10/08 3:43:21 PM

Be Edt Vew Hgoy Godnads Toos teb

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10:

@ DL BE

enens

__BIB) G o

ggipes

Layout

HaRwateh
Expand All Collapss Al

Pipe Saved Fun Pipe

Back to My Pipes | New

E Zfe:l

Save | Saveacopy | Properties,

¥ Sowces

» User inputs.

¥ operators.
Caunt

(Fier 5
(oater—

OURL
© 7 ntp v ajian comindeanl
© gy tpteess feedbumer comiprotot
© 7 ntpijauery commlogteeds

© ity eecs yubiog comYanaoUs

© fs htpeess feectumer.comiajoa
S0t © ghipiice ioushasipoputatajex

Uriau
Fitor non-urious items based on ferm ik

» Location < t
» Humver J

» My pipes

Promatiters of nterest
Position

Defaultiext

Debug

‘Pormit 7] terns that match [l 3] ofthe folowing
O Rules
© ltem description

W[Contains =t wired].

(oo)

IPipes: AjaxWatch - Mozila Firefox

o Et e Hgory Goomars

st

Web Services and Beyond

Visually building a mash-up
that aggregates a number of Ajax
related information feeds and

allows the user to query the result
for keyword matching articles

€2 CoQF

1o i Poes imteansesocer 63w) [l ceooe

Vore gget 1 as thomasapowel (ogout)

The resulting mash-up in action

2UBPESs tore vy ppes s tres Documenision. EXTTTTT

Searching for JSON in
the latest Ajax news

Prototype 1.6.0 release candidate

thoughtiul incremental upgra

Prototype 1.5.1.1 bug fix release

Prototype 15.1.1 is now available for download. This is a bug fx release that prvents crashes with versions 1.3 Jouery.com

and 2.0, of the Safar browser. We urge everyone using Prototype 1 5.1 to upgrade 1o this latest relsase. Previous

versians of Protatype cauld tigger bugs in Safar's reguir. Modules:
fetch

Prototype 1.5.1 released fiter

Afer almost two months of testing through four release candidates, the inal version of 15,1 is here . The core team | unig

and dozens of contibutors have fixed 30 bugs and introduced a slew of features and performance optimizations textinput

since 1.5.0. Here's a look at the highlights af our best release yal i

Release candidate 3 S

Prototype 15.1_1c3 5 autl Here's what's new. Bug fxes Element. addMethads now again adds the methods to S

Element. #/B33] Form.request also works
Safari no longer crashes on StringéstripSaripts ant

JSONPath: XPath for JSON Structures,
Stefan Gossner though that there should be a beneft in having some kind of XPath4JSON, He ended up creating
JSONPath, “a lightweight companen! that allows to find and extract relevant portians aut of JSON structures on the
Gliert as wall a5 on the server.” Given the JSON structure

Searh o P 5
AjaxWatch autror
Simpl ppe hat ps popular Al rlted feeds and alows you o fite wih a keyword f frest %& thomaspovell
i
dtsaurce | Delete | Unpubien | Clone
Configure this Pipe- grnre:i;s: ARG,
Y - — T Pubishod on
Sl
use s Pipe
D) 120Gt rosuts by Emailor Phone. EJMore options Togu:
wimenteg ©
s

The first release candidate of Pratotype 16,0 has arived The core tear is continuing is tradition of biinging i
5 10 the core APIs in addition 1o perfomance improvements and bug fixes. Keep
reading for some of the highlights of this major release, or download it now.

with forms containing an input element with name="action" . [4803]

Sources:
feedoumer com
yulbiog.com
del.cio.us
feeds.feedbumer.com
feeds.yuiblog,com

9

Edit Source

this i YxHIOO!

Dore.

[O [Rvsow o8

Figure 10-7 Plumbing Web 2.0 with pipes

ch10.indd 515

occurring events, this approach is quite inefficient and is completely unworkable for
approaches that need a real-time or near real-time connection. The Comet communications
pattern changes this by keeping a connection open between the browser and server so that
the server can stream or push messages to the browser at will, as shown in Figure 10-8.

NoTE Comet is not an acronym and appears to be a somewhat tongue-in-cheek cleaner-related
moniker given to a collection of server-push approaches being used. The introduction of the term
is attributed to Alex Russell of Dojo Toolkit fame around March 2006. The implication of how
this pattern was implemented, coupled with dislike of the expression, has led others to introduce
a variety of other terms of similar meaning for commercial or personal reasons, much to the
confusion of developers and Ajax book authors alike.

315

1/10/08 3:43:22 PM

516

ch10.indd 516

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

Partial page refresh Partial page refresh
[——|
Content Partial
- Update - A P:me[
§ ‘| Update
Pg.A Pg.B :
User Activity : .
t |t s
gl @ gl +w &\ @ % =
B 15 g |3 A |55
Client Side T (& § (& HBEE 2%
_ _ 2l |5 3 |5 2| EH 5%
Client Communication Layer * [* I + | & | o R
Fy Fy et
g ' | ‘ !
h ' o ol o
g
g g R E
=0 = = - =
Sk E 3l 5.3 .3 1.y
52 = 2 £ EAl g
: B z 5 (& 3 3 | &
Time z g E él ‘ B = S | | g
&5 3| 3 a | 3
| | | |
| | | | >
1 1 i T >
Server Communication Layer | | | |
v ! v ol
Server-Side Server-Side
Processing Processing

Server Side

Ficure 10-8 Comet, push reborn

What to call this push-oriented communication pattern and how exactly it should be
accomplished is subject to much debate and confusion. A continuous polling mechanism
certainly doesn’t count, but if the frequency were enough that it would provide the effective
functionality for most applications—we’ll dub that the fast poll. Another approach would be
to use a long poll, where an XHR is employed and holds a connection open for a long period
of time and then re-establishes the poll every time data is sent or some timeout is reached.
Still another approach is often dubbed the slow load or the “endless iframe,” given how it is
usually implemented as a continuous connection sustained through a connection that never
terminates. We might also introduce true two-way communication using a socket
connection bridged from a Flash file or Java applet into the page—we call that a binary
bridge. Finally, given the need for real-time event handling, some browsers have introduced
native server-event monitoring. All the approaches are summarized in Table 10-2 and shown
visually in Figure 10-9.

We present each of the communication schemes individually to explore their
implementation and network traces before taking a brief look at everyone’s favorite sample
push-style application: chat.

1/10/08 3:43:22 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Approach Description Comments

Fast poll Calls the server very rapidly using a | Uses standard HTTP request to a Web server.
standard XHR call to see if changes
are available. Not really a push but if continuous enough

appears as instantaneous.

Significant burden on server and network with
numerous requests.

No way for server to initiate the data transfer.

Long poll Uses an XHR, but we hold the Uses standard Web server with HTTP
connection open for an extended connections.
period of time say 20-30 seconds. Server can push data to browser assuming there
After the time threshold is reached, is a held connection open.
the connection is shut down and
re-established by the client. The Held connections and some Web server-
server may push data down the application server architectures may not get
held connection at any time and along well.
thus shut the connection, which the
browser will immediately re-open. Gap of no connectivity when browser re-establishes

connection after data transfer or timeout.

Slow load Uses an iframe that points to a Does not use an XHR and thus lacks some
never finishing URL. The URL in networking and script control, though as an
question is a program that pushes iframe it works in older browsers.
data when needed to the iframe,
which then can call upward into the Continuous load can present some disturbing
hosting page to provide the newly user interface quirks such as a never finishing
available data. loading bar.

Tends to result in growing browser memory
consumption and even crashes if connection
held upon for a very long time.

Binary Uses Flash or Java applet to Relies on binary that may not be installed.

bridge make a socket connection to the
server. As two-way communication, Piping between JavaScript and binary may be
the socket provides full push problematic.
possibilities. Received data is made
available via a JavaScript from the Very flexible in terms of communication methods
communications helper binary. and data formats.

Native In some browsers like Opera 9 Uses native browser facilities.

browser you should be able to subscribe Apparently works similarly to an endless iframe

access to server events that will wake from a network point of view.

the browser when data is made
available.

Not widely implemented as of yet.

TaBLe 10-2 Summary of Push-style Communications Approaches

ch10.indd 517

al

1/10/08 3:43:22 PM

518

ch10.indd 518

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

Binary Bridge
l - Fast Poll Lt
™ [l Rapid XHR calls 5
Long Poll
< B >

20-30 Second XHR Calls with Re-Establishment

Push
Web Browser i
< Native Browser " App
Subscribe to Server Events
A Utilizes endlessly loading i-frame
Web Server
(ajaxref.com)
F' Y
BinaryBridge [N _ :
Socket Traffic Possible Coordination

Socket Server
(ajaxref.com:7225)

Ficure 10-9 Many different approaches to Comet or push-style communication

Polling: Fast or Long
The polling pattern may not be graceful, but it is effective in a brute force manner. Using a
timer or interval we can simply repoll the server for data.

Chapter 10 - Poll ozilla Firefox [_ O] =]
File Edit ¥iew History EBookmarks Tools Help {:}
@ - @ - @ @ @ “:l http:ffajaxref. comfch10/pall.html "| P] |'|Gnog|e (\\]

|»

Poll

Poll Interval: |1 Second |«

E

2% Irepect Clear [[Al HTML €55 35 XHR Images Flash €, 8

Console HTML (5% Script DOM | Net | YSlow Ciptions =
poll.html ajaxref.com 2KB J 16ms
ajaxtcr.js ajaxref.com 108 KE | 1.585
template.js ajacref.com 21 KB | 232s
poll.php ajaxref.com 26b | 15ms
= poll.php ajaxref.com 260 | 15ms

Headers Response
Hello World at 09:14:14 PM

poll.php ajaxref.com 26hb | 31ms

TP e AT, A L R i R R A b i

If the polling frequency is fast enough, it can give a sense of immediate data availability
(see http:/ /ajaxref.com/ch10/poll.html). However, if little activity occurs, you end up issuing

1/10/08 3:43:23 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 519

a great number of network requests for very little value. You might consider adding a decay
concept to a polling solution, the idea being that if you do not see changes you increase the
delay between poll attempts. However, a downside to this approach is that when such
infrequent changes do happen, it may be some time before the user is altered to them.

The long poll pattern is better for dealing with updates that may not be predictable.
Connections are re-established upon data or can be set to re-establish upon a timeout with a
retry mechanism. The following example (http:/ /ajaxref.com/ch10/longpoll.html) uses this
pattern to call a server-side program that responds with a varying amount of time. If the
server doesn’t respond in 30 seconds, it will retry again for a total of 10 times, assuming a
three-minute period of inactivity indicating the server being unavailable. However, if the
server does respond, you'll note that outputTarget gets updated, but the onSuccess
handler just starts the request all over again.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Long Poll</title>

<script src="http://ajaxref.com/chl0/ajaxtcr.js" type="text/javascript"s></scripts>
<script type="text/javascript"s>

function sendRequest (response)

{
var options = {method: "GET",
outputTarget: "hellodiv",
retries: 10,
timeout: 30000,
onSuccess: sendRequest};
/* treat the first response specially - no delay */
if (!response)
options.payload = "delay=0;";
AjaxTCR.comm. sendRequest ("http://ajaxref.com/chl10/longpoll.php", options) ;
}
AjaxTCR.util.event.addWindowLoadEvent (function () {sendRequest (false);}) ;
</scripts>
</head>
<body>

<hls>Long Poll</hl>

<div id="hellodiv"></div>
</body>

</html>

The simple PHP code to simulate a long poll pattern just creates random delays to give
a sense of intermittent server activity.

<?php
header ("Cache-Control: no-cache") ;
header ("Pragma: no-cache") ;
if ($_GET["delay"])
$delay =$ GET["delay"];
else

ch10.indd 519 1/10/08 3:43:23 PM

520

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

Sdelay = rand(1,20);
sleep (sdelay) ;
print 'Hello World at ' . date("h:i:s A");

?>

The network trace here shows the long poll pattern in action:

JChapter 10 - Long Poll - Mozilla Firefox =] E3

Fil= Edit ‘ew History Bookmarks Tools Help {:}

@ - l% - @ L(,_‘J @ ||:| http:fiajaxref. comfch10flongpall. html |Y‘ b] "|Gnngle ‘\-\Q]

Long Poll

Hello World at 02:19:33 P

%" Inspet Clear [Al HTML €55 35 WHR Images Flash 8
Console HTML (€55 Script DOM | Net | YSlow Cptians =
longpoll.html ajaxref .com 54 b J 15ms
ajaxtcr.js ajaxref.cam 103 KE J S4ms
template.js ajaxref.com Z1KB J 47ms
longpoll.php ajaxref.com 26hb J 3lms
= longpoll.php ajaxref.com 26b J i

Headers Response

Hello World at 05:18:05 DM

=l longpoll.php afaxref.com 26hb | 14.07¢

Headers Response

Hello World at 09:18:22 PM

longpoll.php ajaxref.com 26b 13.055
longpoll.php ajaxref.com 26b 5.055

longpoll.php ajaxref.com z6b | 10.07s
longpoll.php ajavref.com 26h 15.07s

b et g g i R i, e e B e R BT,

NOTE Close- and timer-based re-establishment of connections is not limited to an XHR
communication; iframes or other transports can use a similar mechanism.

The Long Slow Load

For many, the long slow load pattern or endless iframe is what they think of when the term
Comet is used. We demonstrate here making an iframe connection to a server-side program,
indicating where we want the response data to be placed in this case a <div> named
“hellodiv.”

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

ch10.indd 520

1/10/08 3:43:23 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond LYl

<title>Chapter 10 - Comet Iframe</title>
<script src="http://ajaxref.com/chl0/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript"s
function sendRequest ()
{
var options = {method: "GET",
transport: "iframe",
payload : "output=hellodiv"};
AjaxTCR.comm.sendRequest ("http://ajaxref.com/chl0/endlessiframe.php", options) ;
}
AjaxTCR.util.event.addWindowLoadEvent (sendRequest) ;
</scripts>
</head>
<body>
<div id="hellodiv'"s></div>
</body>
</html>

On the server we generate a response page to go in the iframe transport. We first notice
the code outputs a <script> tag that will call the parent window and put content in the
specified DOM element found in $output, which in our case is “hellodiv.” We also note
that it does this output in an endless loop and flushes the contents out in two-second
intervals.

<?php
header ("Cache-Control: no-cache") ;
header ("Pragma: no-cache") ;
?>
<html>
<head>
<title>No Title Required!</titles
</head>
<body>
<?php
Soutput = $ GET["output"];
while ($output)

print '<script type="text/javascript"s';

print 'window.parent.document.getElementById ("' . Soutput . '").innerHTML =
"Hello World at ' . date("h:i:s A") . '";';
print '</scripts>';
ob_flush();
flush() ;
sleep(2);
}
?>
</body>
</html>

ch10.indd 521 1/10/08 3:43:23 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

522 Part Ill: Advanced Topics

Back in the browser, the time is updated every few moments, but looking at the DOM
we see a whole bunch of <script> tags being added into the never-ending iframe:

B <seripr typestcexc/javascripe”s
window. parent . docunent . yetElementById({"hellodiv") . innerHTHL = "Hello World at 02:08:10 PH";

<fscripts
<script type="taxt/javascript">
@ <script types="text/jsvascript">
[<seripr types'texc/javascripe”s
[<script types“text/javascript®s
B <script type="text/javascript">
@ <script types="text/jsvascript">
[<seriprt types'texc/javascripe”>
@ <script type=‘text/javascript"s
<script type="text/javascript">
@ <script type="text/jsvascript">
[<seript types'texc/javascripe”>
@ <script type=“text/javascriptts
B <script type="text/javascript">
@ <script types="text/jsvascript">
<script types"text/javascripes
[<script types‘text/javascript®s
<script type="text/javascript">
@ <script type="text/jsvascript">
[<2oript Eypes“test/javascripe"s
[<script types“text/javascript®s
B <script type="text/javascript">

window. parent. docunent . getElenentByld {"hellodiv") . irmerHTHL = "Hello World at 02:07:14 PH";

We also note that the browser loading part makes it look like we are never finished
loading the page:

ch10.indd 522

1/10/08 3:43:24 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 523

) Chapter 10 - Comet Iframe - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help {:}
@ > @0 B e ey
Hello World at 02:09:27 P
=101
| Transferring data from ajaxref.com... L R REED . <

@ I ko B [Clesoos [

Hello World at 02:10:03 PIM

| TransFerring data from ajaxref, com. .. I | O B s y

Some have argued this UI quirk is a good thing because it lets the user know they have
a connection, but we think that is overly optimistic view of how users will interpret that
indicator.

Finally, we note that if we let the example run for a while the browser’s memory foot
print will grow and grow.

Epovell

85,264 K Fireworks.exe tpowell

The long slow load may have its issues, but it does work. Give it a try yourself at
http:/ /ajaxref.com/ch10/endlessiframe.html.

Binary Socket Bridget

When Ajax needs a little help from its friends, embedded binaries like Flash or Java can be
tapped. We saw early in the chapter when crossing the same origin barrier that Flash often
has capabilities that native JavaScript lacks. Now, when trying to solve the real-time
problem, we see that Flash offers us the possibility of TCP socket-based communication,
which will provide true continuous connection two-way messaging. So Flash will act as

ch10.indd 523 1/10/08 3:43:24 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

524 Part IlIl: Advanced Topics

a binary bridge, making the communication to a socket server and pipe information back
and forth to the JavaScript in the page. We note the browser isn’t the only one needing
assistance, as the socket server will act as a helper to the Web server as well.

' = 0 >
Load "Push App"

Web Browser

r

-—

A

L

Page updates
with JavaScript

FLASH Possible

4 Web Server Coordination
(ajaxrefcom)

Binary Bridge >
Socket Traffic
—

Socket Server
(ajaxref.com:7225)

As an example of the binary bridge approach, we again use a Flash object helper. Given
the following ActionScript code in our file (ajaxtcrflash.as), we see the exposure of a socket
method externally.

import flash.external.ExternalInterface;
class AjaxTCRFlash({

static function socket (url, port, callback)
{
var socketObj = new XMLSocket () ;
socketObj.connect (url, port) ;
socketObj.onData = function (input:String) {
ExternalInterface.call (callback, input.toString()) ;

Vi

1
static function main() {
ExternalInterface.addCallback ("socket", null, socket);
1

Similar to the cross-domain example earlier in the chapter, we compile this code into a
SWE file and take the created SWF file and insert it into the page. We do have to address the
various browser differences for inserting and referencing the SWF file, but once it is put in
the page, we simply call its externally exposed socket () method and signal what the
callback is that we want it to populate the page with.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml">

ch10.indd 524 1/10/08 3:43:24 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 525

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10: Socket Time</title>

<script type="text/javascript"s>

function createSWF ()

{

var swfNode = "";

if (navigator.plugins && navigator.mimeTypes && navigator.mimeTypes.length)
swiNode = '<embed type="application/x-shockwave-flash" src=

"http://ajaxref.com/chl0/flash/ajaxtcrflash.swf" width="1" height="1"

id="flashbridge" name="flashbridge" />';

else {
swiNode = '<object id="flashbridge" classid=
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="1" height="1" >';
swfNode += '<param name="movie" value=

"http://ajaxref.com/chl0/flash/ajaxtcrflash.swt" />';
swfNode += "</object>";

}

document .getElementById ("flashHolder") .innerHTML = swfNode;

}

function getSWF (movieName)

if (navigator.appName.indexOf ("Microsoft")!= -1)
return window [movieName] ;

else
return document [movieName] ;

function printTime (str)

{

document .getElementById ("responseOutput") .innerHTML = str;
1
window.onload = function()
createSWF () ;
document .getElementById ("socketButton") .onclick = function () {
getSWF ("flashbridge") .socket ("", "7225",
"printTime") ; }
1
</scripts>
</head>
<body>
<form action="#">
<input type="button" value="Socket what time is it? " id="socketButton" />
</form>

<div id="flashHolder"></div>
<div id="responseOutput"s> </div>
</body>
</html>

ch10.indd 525 1/10/08 3:43:24 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

526 Part Il1l: Advanced Topics

To see real-time communication in your Web browser via Flash, see the example at
http://ajaxref.com/ch10/flashsocket.html. It works quite nicely; the only thing you might
not like is that the browser status might show a strange communications message:

Read ajaxref.com

Server Event Listeners

The WhatWG specification (www.whatwg.org) defines server events to help enable push-
style applications. While the specification is still quite new, Opera 9 already contains partial
support for this interesting idea, and other browsers are likely to follow. The basic idea is
that we include a new tag:

<event-source />

and set the src attribute to a server-side program of interest:

<event-source src="servertime.php" id="timeEvent" />

We then use JavaScript to bind an event listener to the tag:

document .getElementById ("timeEvent") .addEventListener ("update time",
handleResponse, false);

listening for events of particular types and then specifying the callback to handle them.
A complete example that sets up the client side is shown here. Note that we don’t bother
with direct insertion of the new tag; we just use the DOM to insert it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Opera Server Events</titles
<script src="http://ajaxref.com/chl0/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript"s
function sendRequest ()
{
var timeEvent = document.createElement ("event-source") ;
timeEvent.id = "timeEvent";
timeEvent.setAttribute ("src", "opera.php");
timeEvent.addEventListener ("update time", handleResponse, false);
document .body .appendChild (timeEvent) ;
1

function handleResponse (event)

{

$id("hellodiv") .innerHTML = event.data;

}

AjaxTCR.util.event.addWindowLoadEvent (sendRequest) ;
</script>

ch10.indd 526 1/10/08 3:43:25 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 521

</head>

<body>

<hl>Opera Server Events</hls>
<div id="hellodiv"s></div>
</body>

</html>

On the server side, we need to pump out events for the browser to receive. We note that
we must indicate a new MIME type application/x-dom-event-stream for our client
updates. We also put the changes in the following form:

Event: event-name\n
data: data-to-send\n\n

A very simple program that outputs the time in this event stream format is shown here:

<?php
header ("Cache-Control: no-cache") ;
header ("Pragma: no-cache") ;
header ("Content-Type: application/x-dom-event-stream") ;
while (
{
Smessage = "Hello World at " . date("h:i:s A");
print "Event: update time\n";

print "data: " . Smessage . "\n\n";

ob flush() ;

flush() ;

sleep(2) ;

}

?>

true)

If you have a browser that supports this style of push, such as Opera 9, give it a whirl at
http:/ /ajaxref.com/ch10/opera.html.

NOTE You may wonder how this idea works communications-wise. Inspection with many browser
level monitoring tools will interfere with the communications mechanism, but when we used a
raw network capture it appeared that the approach uses an unending HI'TP request pattern
similar to the endless iframe, at least in the current instantiation in Opera 9.

The Comet Challenge: Web Chat

If you say anything at all about Comet, you have to include some mention of chat. We
implemented a basic chatting system using all the methods previously discussed. You can
find a page pointing to each of them at http:/ /ajaxref.com/ch10/chat.html.

Architecturally, chat presents some interesting challenges. For example, when a user
types a message, if you wait to get a response back from the server before updating the page,
it really seems quite slow to the end user. However, if you directly post the message client
side, you face a clock skew problem because your local posts are slightly different than
server posted messages. If you opt for posting your own messages locally, you don’t need to
fetch those from the server; you only want other people’s messages. Even monitoring user

ch10.indd 527 1/10/08 3:43:25 PM

928

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

liveliness versus posting messages is a bit difficult, with the former requiring that you do
replacements of data to keep an up-to-date duplicate-free list of users, while the latter is a
continuous appending of data approach to updates. We'll let you dig into the code to see

these issues and more; otherwise, you can enjoy chatting as we did in Figure 10-10.

The Comet Impact

Adding Comet-style interaction to your Web site is a potentially dangerous endeavor. The held
connection approach, coupled with how many Web servers and application environments are
built, can lead to significant scalability problems. For example, PHP doesn’t generally let you
keep connections open for extended periods of time. This is by design, and the approach leads
to the environment’s good scalability. Regardless of the application server, you may also see
Web servers choking on Comet, consuming and holding memory and processes for each
connection. In short, scaling Comet apps can be quite troublesome without careful planning.
Even if you did not face server problems, the approach of held or continuous
connections favored by Comet-style applications is quite troubling in light of the browser’s
two-connection limit we saw in Chapter 6. Of course, you could use another domain name
to avoid this, but then you run into the cross-domain concerns. There are ways around this
using an iframe with document . domain loosening, as we saw in Chapter 7, or using Flash

EEE
&) - [moslapet comphuvichatameicha s) faccare 2]
| Ble Edt yew Favortes Took el
U 8 O hepter 10 Chat- Comet | | |- B - & - hege - Grreds - 7
(=
(-
O eatar EEE
gcm o Ble Edt Vew Hgtory Bookmaks Took Help [
Laura
@ sharon &0 @ O (D it st BIb) [o &
@ starbuck

1

(212 PM] ©
Baltar are you sure you are nota Cylon? @ Battar
@ cov.ion
Baltar[213 P
1'am most certainly notl BTW do you want to “hot chat? @ Laua
@ snaron
Sharon [2:13 P
Him being a cylon would ruin the name for the rest of us! @ starbuck
Starbuck[2:13 PH]
Cal. Tigh[2:13 PM] —~
Willyou rakking idiots stop hat chatting in here 61212 PN
Baltar are you sure you ate nota Cylon?
Baltar [2:14 PM]
Sharon do you wantto join our hot chat? Sharon [2:13 P
Hirn being 2 tylon would ruin the name forthe rest of ust
Laura[214 PM]
I can'tbelieve that while 'm hard at work rying to save the human race, you all cant stop hat chatiing and drinking! Baltar[213 Ph]

1 arn most cerainly notl BTW do you wantfo"het chat'?

Col. Tigh [2:13 PM]
Wil you frakking idicts stop hot chatting in here

Starbuck| 2:13 PH]
e had enough ofthis: cylon chat Who wants a drink?

Baltar [2:14 PM]
Sharon do you want to join our hot chat?

Laura [2:14 PM]

Madam President you are such a prude!

| can'tbelieve thatwhile I'm hard atworkrying to save the human race, you all cant stop hot chating and drinking!

Col. Tigh [2:16 PH)

Arghhhl Pour me another drink!

o [[T LT [meme
. .r'
Trensferring datafrom ajaxref com. T [© [Bvson omes ,

Ficure 10-10 Chatting Comet style

ch10.indd 528

1/10/08 3:43:25 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 529

with a crossdomain.xml file, as we saw in this chapter. Someday, with native XHR support
for cross-domain calls, the domain restriction will fall away as we begin to provide multiple
DNS entries for our servers, but for now this too is a limitation we must address as well.
The solution to the Comet scale problem comes in two major flavors. The first option is
to move to a server-application programming environment architecture pairing that might
be more suitable to event-driven long-connection-style coding. One popular platform for
this is the Twisted (http:/ /twistedmatrix.com) event-driven networking engine, which is
written in Python. The other solution is to use a helper server to offload the long-lived
connections but continue to employ the primary environment for normal pages. This is
similar to the approach we took in the binary bridge solution using a socket connection.
There is no doubt you can make a push-style application work, but as of yet there is no
optimal solution that most agree upon. Those who wish to explore this pattern once again
heed the simple warning that as of today, push-style applications will work well in the
small but not in the large without some careful planning or even architectural changes.

Going Offline

The final frontier of Web applications using Ajax is going offline. If you could use a Web
application on the desktop when you are disconnected from the Internet, say as you fly
cross country, and then could later go back online seamlessly, there really is little difference
between a desktop application and a Web application. As of late, there's been a bit of envy
from Web applications of the desktop richness of offline capabilities, but on the reverse we
see desktop apps smarting from the difficulty of distribution and updates that Web
applications enjoy. Of course, software applications today rely on the Web to fetch updates
and patches to grab this benefit of the network-connected world. It’s only fair then that a
Web application looks to set up camp on a user's desktop.

What does going offline mean for an Ajax application? What changes will we have to
make? First, we need to persist data on the client and rebuild any application state from the
persisted data. In the last chapter, we alluded to having such functionality and performed
this task in support of history and back button concerns, so we'll start with that. Second, we
will need to store resources offline. That might be a bit trickier, and without bleeding edge
browsers or extensions like Google Gears, we are out of luck. Finally, we will have to make
sure we can work without the network, which will certainly require some careful thinking,
interface changes, and extensions like Google Gears. So fasten your seat belts: this last part
will get a bit bumpy, but it is well worth the ride.

Client Persistence and Storage

Even if we are always online, we will likely want to persist data between sessions or pages.
If this is performed client side, we nearly always turn to cookies. In Chapter 9 we saw that,
in support of fixing history and the user’s perception of a broken back button, we needed to
persist information to make requests or even the responses from previously sent requests.
We abstracted the persistence of data away from readers with the library, but here we reveal
some of the techniques that can be utilized to persist data. As with many things on the Web,
there are many ways to perform the same task, but we stick with the more common
solutions to the problem here.

ch10.indd 529 1/10/08 3:43:26 PM

330

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

The first and most obvious solution to the persistence challenge are cookies that are
easily accessible using JavaScript’s document . cookie property. While cookies are generally
limited to about 4K, we could concatenate data across cookies to provide as much storage as
cookies are allowed for a domain.

var pieces = Math.floor (value.length/AjaxTCR.storage.DEFAULT MAX COOKIE SIZE + 1);

for
AjaxTCR.comm.cookie.set (key+i.toString(), value.substring(i*AjaxTCR.storage.

(var i=0;i<pieces;i++)

DEFAULT MAX COOKIE SIZE, AjaxTCR.storage.DEFAULT MAX COOKIE SIZE), expires);

ch10.indd 530

We have no idea how many cookies were used when reading the data out of a cookie-
based storage, but we know the general formula of each piece of the value is key+piece
where piece is an integer starting at zero (for example, savedkey0,savedkeyl,savedkey2). So,
to read the data out of cookie-style storage, we would use a little algorithm like so:

var 1=0;
var fullvalue = "";
do {
var val = AjaxTCR.comm.cookie.get (key+i.toString()) ;
if (val)
fullvalue += val;
1++;

} while(val);

if (fullvalue != "")
return fullvalue;

While the splitting across cookies seems quite expandable, it may be limited to as few as
20 cookies per server, though browsers may allow more. You should assume if you attempt
to persist more than 50K with cookie storage you are starting to play with fire.

The second method for persisting data is Internet Explorer’s Persistence Behavior.
Behavior technology is leftover from the DHTML generation, but don’t dismiss this as
premillennial technology; it is quite capable. To enable the feature define a style sheet
like so:

<style type="text/css">
.storagebin {behavior:url (#default#userData;) }
</style>

Then bind it to a <div> tag, which serves as a binding container for the storage:
<div id="persistThis" class="storagebin"s></div>

To store things in IE’s persistence system, we would then find the <div> tag in question
using the DOM and use setAttribute to define the key-value pair we want to save.
However, to commit the data, you must call a save () method and pass it a string to
reference the data.

var persistObj = document.getElementById("persistThis");
persistObj.setAttribute (key,value) ;
persistObj.save ("storageLocker") ;

1/10/08 3:43:26 PM

ch10.indd 531

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Note that you can save multiple key-value pairs in a particular store like our
"storageLocker" above.

Retrieval is performed similarly. First, fetch the DOM element being used with the
persistence behavior. Next, call the 1oad () method, passing it the string used as the store
(in this case "storageLocker"). Finally, use getAttribute (key) to retrieve the value at
the passed key.

var persistObj = document.getElementById("persistThis") ;
persistObj.load (store) ;
var value = persistObj.getAttribute (key) ;

The third method for persistence would be using the Flash Player’s Sharedobject and
bridging into JavaScript, as we have done for cross-domain requests and socket communication
previously in this chapter. This approach is quite appealing because it is transportable between
any browser that can use the Flash Player. This means that you can persist data between
Internet Explorer and Firefox on the same machine, very powerful and very scary to the
privacy minded! Second, we note the scheme typically has a decent size limit of 100KB, though
it can be tuned much higher if the user is prompted. Finally, the storage is not known by many
users and thus is rarely cleared by them. Of course, it has the obvious downside of requiring
Flash in order to work and then relying on the bridge between the two technologies.

The ActionScript code to create a storage system in Flash is quite simple and is shown
here in its entirety:

import flash.external.ExternalInterface;
class AjaxTCRStorage(
static var mySharedObject : SharedObject;

static function add(key, value)

{

mySharedObject.data[key] = value;
mySharedObject.flush() ;

}

static function get (key, value)

{
}

static function clear()

{
}

static function remove (key)

{
}

static function getAll ()

{
}

static function main ()

{

mySharedObject=SharedObject.getLocal ("AjaxTCRData") ;

return mySharedObject.data[key];

mySharedObject.clear () ;

delete mySharedObject.data[key];

return mySharedObject.data;

a3l

1/10/08 3:43:26 PM

932

ch10.indd 532

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

ExternalInterface.addCallback
ExternalInterface.addCallback ("get", null, get);

("add", null, add);

(
ExternalInterface.addCallback ("clear", null, clear);

(

(

ExternalInterface.addCallback ("remove", null, remove) ;
ExternalInterface.addCallback ("getAll", null, getAll);

Similar to the previous examples using a Flash bridge, we can call the various methods
in the page directly from JavaScript. First, as before, we have to add the SWF file to the page
and then reference it in browser-specific ways. We omit showing this code again since we
have seen it twice before already in this chapter. Then, we return a reference to the
embedded SWF object.

var storageObject = getSWF("flashstorage") ;

To add a value to Flash’s storage, we simply call the externally exposed add () method,
passing the key and value we are interested in storing.

storageObject.add ("timelord", "the doctor");

Retrieving is quite simple as well: just call the external get () method on the embedded
SWEF object and pass it the key of interest and it will return a value if there is one.

var val = storageObject.get ("timelord") ;
// returns "the doctor"

To further explorer Flash’s persistence system, we have provided a demo at
http:/ /ajaxref.com/ch10/persistenceflashexplorer.html. You should find it quite interesting
and maybe a tad disturbing that you can reference persisted data between browsers using
this scheme, as demonstrated in Figure 10-11.

The final solution we present is the native storage mechanism found in Firefox 2-and-up
browsers, based upon the WhatWG’s (www.whatwg.org) global persistence object. In
supporting browsers, you can specify the domain where the storage items are available. For
example, globalStorage ["] is available to all domains, while
globalStorage ["ajaxref.com'] would be available to ajaxref.com domains and
globalStorage ["www.ajaxref.com"'] would just be accessible to that particular domain.

Once you have defined your storage range, you can use getItem(key) and
setItem(key, value)methods on the object like so.

var storageObject = globalStorage ("ajaxref.com") ;
storageObject.setItem("secretagent","007") ;

var value = storageObject.getItem("secretagent") ;
// returns "007"

We summarize each of the storage mechanisms discussed so far in Table 10-3.

We've implemented each of these mechanisms except the Flash approach in the
AjaxTCR library, with the library failing back to cookies if another approach is unavailable.
The details required to store persistent data regardless of underlying mechanism are as
follows.

1/10/08 3:43:26 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond
% ,Chapter 10 : Persistence Explorer with Flash - 0f /- Chapter 10: Persistence Explorer withswinduws Inter =101 |
File Edit “iew History Bookmatks Tools Help Eils T Edit i View Sl Fockm ik S doc RO i -0 m 52 IE‘ http:ﬂfajaxref.mmp’(hj |iy||£| IGDng\e
1 « & 0 htp: -
@ - - @ X m [} httpsjfafaxr €T & |0 mmmms SF €A @ Chaprer 10 : Persistence ... | H 5 - B - o - hpage - 7
Persistence Explor Persistence Explol| persistence Explorer
Niip o — Add Persistent Data
— istent Data
Key: Add P Data
Key:
o Valug Key: [
alue
Value: I
PRRIBED Add Data
ata S
Add Data_|
Get Persistent Dat — Get Persistent Data
— Gel ata
K Key: Get Persi Data
ey
P ’7Key: |
Fetch Dat R Dat Get All
Fetch Data | Femaove Data I Getall |_ ol il S = b
FetchData | RemoveData |[[GetAil] Delete Al

All Items in Storage
Secret10: The secret to mind cantral is ...

gecretg: me secret \chitmr}ﬁmsﬂanhs g .. Secretd: The secret location of Alantis is .. | All ftems in Storage

ecretS: The secret of the "The Secret” is .. Secretd: The secrel of the "The Secret” is

Secret?: The secret sauce is made out of .. Secret?: The secret sauce is made out of g;;3;?f:gesicef;ftlggart?c‘);do‘;ml\ﬁt:; \5

Secreth: The secret of everlasting life is .. Secreth: The secret of everlasting life is Secretﬁ: The secret of the "The Secret” ‘E'"

Secrets: The secret location of the WiviDs is ... Secrets: The secret location of the WiiDs is SecretT: Tho ocral bates 5 e et oF

Secretd: The secret of Bigfoot is ... Secretd: The secret of Bigfoot is Secretﬂ: The secret of everlasting life is

Secretd: What is actually at Area 51 is .. Secretd: What is actually at Area 51 is SecretE: The secret location oftﬁe WM[-)-E- is

Secret2: The secret to unimaginable wealth is Secret2: The secret to unimaginable wealth is Secretll: The secrat of Bigoot is

Secret1: The secret to happiness is ... Secret: The secret to happiness is SecretS: What is actually at Areamﬁﬂ =
Secret2: The secret to unimaginable wealth is ._.
Secret1: The secret to happiness is ...

All kems in Storage
Secret1d: The secret to mind contral is ...

| Dane

ERT T

[- T

Ficure 10-11 Sharing persisted data with Flash storage

ch10.indd 533

First, we must initialize the persistence system using the init () method, which returns
a reference to a persistence object we will use later:

var persistObj = AjaxTCR.storage.init();

To add a value to the store, we use the add () method, passing it a key and the value
we are interested in storing;:

AjaxTCR.storage.add ("way to a mans heart","his stomach")

In the case of Internet Explorer we saw we also needed to pass in the persistence object.
Thus, add () actually takes that value as well and optionally a storage string value like so:

AjaxTCR.storage.add ("way to a mans heart","his stomach",persistObj, "default")

Because of the differing browser needs, we make the assumption that the
persistObject must be passed in and that the store is optional, though it will default to
the value “AjaxTCRStore” when not specified.

To retrieve a value from persistent storage, use the get () method, passing it the key
and persistence object:

var secret = AjaxTCR.storage.add("way to a mans heart",persistObj) ;
// returned "his stomach"

333

1/10/08 3:43:27 PM

534 Part I1l: Advanced Topics
Approach Description Comments
Cookies Stores data in persistent Possible in any browser.

cookies (disk cookies), splitting
larger items across a number
of cookies to be concatenated
together upon retrieval.

Subject to cookie cleansing
from privacy concerned users.

Size and browser limitations.

Network impact as the cookie storage
would be transmitted every request.

Security impact as storage is sent in
requests.

Internet Explorer
Behaviors

Stores data relative using a
DHTML behavior bound to a page
element such as a <div> tag.

Internet Explorer—specific system.

A single page is limited to 64K of
persisted data with a whole domain limited
to 640K.

Without a special cleaning program it
may be difficult for users to dump this
information.

Flash storage

Uses Flash shared object to
store data in browsers that
support Flash.

Most bridge between SWF file embedded
in page and JavaScript.

Shareable between browsers, unlike any
other mechanism.

By default you should be able to store
100KB of data in this system. It is
adjustable with user prompts.

Users unlikely to dump persisted data
as they are unaware of the storage
mechanism.

Native Browser
Storage (DOM
Storage)WhatWG

A globalStorage system is
natively available from supporting
browsers in JavaScript.

Can be shared across a range of domains
and sites. Could be open for abuse.

Only implemented in Firefox browsers at
this point in time.

According to the current spec, a 5MB
limit is currently defined, though this may
change, particularly if abused.

TaBLe 10-3 Summary of Push-style Communications Approaches

ch10.indd 534

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

1/10/08 3:43:27 PM

ch10.indd 535

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

A convenience method of getall () is also provided that returns an array of all items in
client persistence.

To remove a value from storage, use the remove () method, passing it the key and the
persistence object:

AjaxTCR.storage.remove ("way to a mans heart",persistObj) ;
// removed value

A similar convenience method, clear (), is provided to remove all items from storage.
The full syntax of the AjaxXTCR storage mechanism is detailed in Table 10-4 and can also be
found in Appendix C.

You can try the persistence system using the AjaxTCR library in your browser with our
simple explorer program (http:/ /ajaxref.com/ch10/persistenceexplorer.html).

Danger: Offline Ahead!

Just because we have saved some data into our client-side persistent storage, it doesn’t
necessarily allow us go offline. For example, let’s use our Hello World style example. If we
go offline in our browser:

50 Edit ‘Wew History Bookm

Mew Window Chrl+r

Mew Tab Chrl+T

Open Lacation. ., Ckrl+L

Open File... Chrl+O

Close Window Chrl+-Shift-+i
Close Tab Chrl+w

Save Page As... Cbrl+5
Send Link. ..

Page Setup...
Prink Prewview
Print... Chrl+P

Irnpork...

and then attempt to make the call, we may raise an exception, depending on the browser.
For example, in Firefox 2 we do not seem to have problems as long as we have previously
requested the page. However, regardless of a previous request or not, in other browsers like
Internet Explorer, you will most likely throw an error when you issue the XHR request in
offline mode.

Eror |
& Runtime Error has occurred.
Do you wish to Debug?

Line: 507
Etror: The download of the specified resource has Failed.

335

1/10/08 3:43:27 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Advanced Topics

Part IlI:

336

agel01s Yo 1xely Jo SpOYIsIN H-QT 18v]

/x PTOD sxow ou x/
! (Cgoastsaad
/W XOU3IO0F,) SAOWSI " 2beI03s " YoIxe vV

‘Ao passed ayy 01 paje|al Wo1sAs
93el01s 2y} WoJ) elep 8yl SaAoway

([2x038]
j0a[qoeourisrtsaad
‘Ko3) anowaI

(Cgoastsaad) xesTo abexols " ¥orxely

‘308 fgosousysTsaad
U1 01 palejas WoalsAs adelols
U1 JO 1IN0 SWal au} ||e sJed|)

([2x1038 "]
j08[qpeous3sTsrad) IesTo

‘A1essadau

11 S8Y009 0] SapeI3ap pue swoj
aoualsisiad Jaiojdx3 19uioiu| pue
X0J2114 91epOoWW09oe 01 Sall WaISAS
20Ud1SISIad "109[qo aouslsisiad ay)
01 9|puey e suinlay "eilep paisisiad

! ()3Tutr-oberols -¥goixely = [goasTtsaad xea guip|oy 40} 8101S e1ep BY] SazIleniu| ()aturt
‘309 Lgoenus3sTsaad
! ([qoastsxad) 1T¥3196" a1 Aq paoualajal walsAs a3elols ([e1035"]

oberols - ¥pIxely = 2InsesalLITe Iea

ay) WoJj e1ep ||e sanalnay

jo09[qoeouajstsiad) TTV¥3ISH

/%

WPTOB JO s30T, smoys x/ ! (sanseaxl)jIsTe
! (Cgoastsasd ’,xoux3xod,)3sb-
obexo3s y¥pIlxely = sansesil xea

‘308 [Lgosousastsaad
9y} 01 pale|al WalsAs a3el01s ayl
woJ) Aoy passed sy} je ejep soAslaYy

([2x038 "]
j08[qosourjstsiad
‘Aoxf) 19b

(Cagoastsaad’ ,pTob
JO s30T, ' uWXOUx3I03,)ppe abexols yorxely

‘pallddns s| anjeA jnejep e asIMIaylo
ul passed aq os|e Aew siaroweled
210735 9y} ‘4240|dx3 19UJd1U| JO BSED
ay1 u| 1108lqo souaisisiad ayy 01
punoq walsAs agelols ajendoidde
8y} Ul payioads Aoy sy e gulis

e se palyloads anjeA ay) sa401S

([e2x03s8 ‘]
joalqoeousjsTsaad
‘anTea ‘Aa3) ppe

ajdwexy

uonduasaq

PoYyIsN

1/10/08 3:43:27 PM ‘

ch10.indd 536

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 531

To see for yourself try our simple demo at http:/ /ajaxref.com/ch10/helloworldoffline.html.

Considering our AjaxTCR library supports its own cache, it would seem likely that
being offline and accessing a cached response from memory would work, and it does.
However, our simple response cache doesn’t solve the offline problem, because what would
happen when you try to make a new request or post some data in offline mode? Errors, for
certain! Of course, if we give the browser something to talk to when it is offline, maybe we
can solve that problem too. Enter Google Gears.

Enabling Offline with Google Gears

Google Gears (http://code.google.com/apis/gears/) is an open-source browser extension
that provides developers the ability to build Web applications using familiar technologies
like JavaScript that can run offline. Google Gears is composed of three components:

* Alocal Web server Caches and serves the resource components of the Web
application (XHTML, CSS, JavaScript, images, and so on) locally in absence of a
connection to the Internet

e A database Stores data used by our offline applications with an instance of the
open source SQLite database (www.sqlite.org/), a fully capable relational database

e A worker pool extension Speeds up the processing model of JavaScript, allowing
resource-intensive operations to happen asynchronously—in other words, to run in
the background.

With these three components installed and enabled, you should be able to perform the
necessary functions to go offline.

Not everyone is going to have Gears installed, so after you include the Gears library in
your code, you will run a simple detection script and bounce them over to the Gears site for
installation.

<script type="text/javascript" src="gears init.js"s</scripts>
<script type="text/javascript"s>
/* global detect for gears */
if (!window.google || !google.gears)

{

location.href = "http://gears.google.com/?action=install&message=You need
Gears to run the Ajax: The Complete Reference Chapter 10 offline demos" +
"&return=http://ajaxref.com";
}

</scripts>

ch10.indd 537 1/10/08 3:43:28 PM

538

ch10.indd 538

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

Note how Google allows us to provide an installation string to alert the user:

¥ Google Gears (BETA) - Mozilla Firefox - 0] =
Fil= Edit Wiew History Bookmarks Tools Help 6::,’::

¢I - @ 5 @ K,_’/ @ |0‘-- http: ffgears. google. comj?action=instal&message=You%:20needv20Gears% Y| b] |" |K»g

GO Ogle Enabling Offline Web Applications

Gears BETA

‘You need Gears to run the Chapter 10 dermos

This is an early release of Google Gears (BETA). After Install Google Gears (BETA)
installati | ttention to the warning dialogs and

o | pay
grant access only to websites that you trust. for Windows

More Information
Google Gears (BETA) is an open source browser extension that System requirements:

enables web applications to provide offline functionality using the = Windaws XPrvista
fUIIUWing JavaScript APl = Firefox 1.5+ and Internet Explorer 6.0+

Google Gears (BETA) is avsilable for Yindows, Mac, and Linus:

ﬁ Store and serve application resources locally

ot o i e e i b b b bt B

i i, b i, i, i, e, o, i, e, i, o, e b b b b, B

Upon install, it also gives us advice of where to return to:

¥J Google Gears (BETA) - Installation Instructions - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help :

@ - I:b - @ % | m |0‘-- http://aears.google. com/done, html? action=installémessage=You%20need%s | &

Go Ogle Enabling Offline Web Applications

Gears BETA

Follow these steps to complete your installation:

Run the installer that is being downloaded
Don't see an installer? Click here:

e Close and restart your web browser (be sure to close all browser windows).

o After restarting your web browser, return to http://ajaxref.com

A e e e e o b b

T A N N W W W A N P

If everything is installed properly and you start to build your first Gears app, be
prepared to be prompted by a browser to allow Gears to run:

1/10/08 3:43:28 PM

ch10.indd 539

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Security Warning | ﬂ

The wehsite below wants to use Google Gears.
http://ajaxref.com

This will let the website store data on your computer.
Do you want to allow this? (What is this?)

[T Remember my decision for this site

Alow |

User training might be required with such prompts, as otherwise they might think
something is amiss.

The first thing you would want to do to go offline is make sure you have the necessary
files available for your browser to use. Gears provides an easy way to do this. First, create a
special manifest . json file indicating the resources you need offline. The file consists of an
entries array containing the URLs you would like to have cached:

{

"betaManifestVersion": 1,

"version": "v1",

"entries": [
{ "url": "offlinetest.html" },
{ "url": "offlinepage.html" },
{ "url": "images/rufus.jpg" },
{ "url": "scripts/alert.js" },
{ "url": "gears_init.js"}

}

We use relative paths here, but you could use full paths and URL as well.
When the page loads we call our own initGears () function, where we create an
instance of the local Web server:

localServer = google.gears.factory.create("beta.localserver", "1.1");
Next, we create a managed store to hold our files:
store = localServer.createManagedStore ("lockbox") ;

When we desire to save files to the local storage, we first indicate the files we would like
to capture:

store.manifestUrl = "http://ajaxref.com/chl0/offline/manifest.json";
Next we go ahead and grab the files:

store.checkForUpdate () ;

339

1/10/08 3:43:28 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

B40 Part I1l: Advanced Topics

As this process may take a while, we start a timer to look every half-second and see if
our files are available for offline usage yet:

/* check every 500 ms to see if it is all saved or not */
var timerId = window.setInterval (function()
if (store.currentVersion)

{

window.clearInterval (timerId) ;

document .getElementById ("responseOutput") .innerHTML ="The documents
are now available offline.";

}

else if (store.updateStatus =

document .getElementById (
"Error: " + store.lastErrorMessage;
}, 500);

3)
"responseOutput") .innerHTML =

Now that the files are safely stored, if the user were to go offline and attempt to use the
files of interest they could do so. If they have not captured the files, they would of course
see the expected error message. These scenarios are shown in Figure 10-12.

If for some reason we want to remove the stored data, it is easily done like so:

localServer.removeManagedStore ("lockbox") ;

Enter the page and capture the files Go offline and visit next page - still works

)Chapter 10 Google Gears Offine Browsing - Mozilla Firefos:

) Chapter 10 : Google Gears Offline Page Tester - Mozilla Firefox
Ele Edi Yew Hgtory Bookmarks Jooks ticp

o) Edit Wiew History Bookmarks Tools Help
- - % 3 | hetpiffaaxref.com/chidjgsarsstorage.h Hew Window Ctrl+N Py " =

«900a@ e -
Open Location... Cl+L

Offline Browsing with Google Gears OpenFle.. Cbiso .
o awy pwed offline?

Visit Next Page Save Page ds... Clrk+S
Send Lk

Erase Stored Files

Page Setup.
Print Preglew
The documents are now available offine.

Brin... Ctitp
Inport

 work offine
Ext

Clear store or don't capture the files Go offline and visit next page - error

¥)Problem loading page - Mozilla Firefox
chapter 10: Google Gears Offline Browsing - Mozilla Firefoi

=
Ele Edt View Hgtory Bookmarks Tools Hep &

Fle Edt Uew Hgory Booknarks Toos Hep @D - @) (D [A romeret conichtoofinepage e [(Gl ceoae %)

G- @ O @ (O o coniopersionein]

Offline Browsing with Google Gears #

Visit Mext Paze 1 Offline mode

B currently n offine mode and can't browse the Web.
The local store has been removed. Tou will no longer be able to browse offine SUndheckSvidc Ofine” I the FI3 et thenitry. agai
Ty Agan
Done [O [vsow y

Ficure 10-12 Offline access: scenarios with Gears

ch10.indd 540 1/10/08 3:43:28 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond LY

We provide a full example to test the storage mechanism at http:/ /ajaxref.com/ch10/
gearsstorage.html, but you can inspect the full code here as well.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<script type="text/javascript" src="gears init.js"></scripts>
<title>Chapter 10 : Google Gears Offline Browsing</titles>
</head>

<script type="text/javascript"s>

/* global detect for gears */

if (!window.google || !google.gears)

{
location.href = "http://gears.google.com/?action=install&message=You need
Gears to run the Ajax: The Complete Reference Chapter 10 offline demos" +
"&return=http://ajaxref.com/chl0/gearsstorage.html";
}

var localServer;

var store;

function initGears()
localServer = google.gears.factory.create("beta.localserver", "1.1");
store = localServer.createManagedStore ("lockbox") ;

}

function createStore()

{

store.manifestUrl = "http://ajaxref.com/chl0/manifest.json";
store.checkForUpdate () ;
var timerId = window.setInterval (function() {

if (store.currentVersion)
window.clearInterval (timerId) ;
document .getElementById ("responseOutput") .innerHTML ="The documents
are now available offline.";
else if (store.updateStatus == 3)
document .getElementById ("responseOutput") .innerHTML =
"Error: " + store.lastErrorMessage;
}, 500);

function removeStore ()
{

localServer.removeManagedStore ("lockbox") ;

document .getElementById ("responseOutput") .innerHTML ="The local store has been
removed. You will no longer be able to browse offline.";

}

window.onload = function() {

initGears () ;
document .getElementById ("captureBtn") .onclick = function() {createStore();}
document .getElementById ("eraseBtn") .onclick = function() {removeStore();}

}

ch10.indd 541 1/10/08 3:43:29 PM

542

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

</scripts>

<body>

<h2>0ffline Browsing with Google Gears </h2>

Visit Next Page

<form action="#">

<input type="button" id="captureBtn" value="Capture Files" />
<input type="button" id="eraseBtn" value="Erase Stored Files" />

</form>

<div id="responseOutput"></div>
</body>

</html>

ch10.indd 542

Gears also provides an offline database that we can write to. After we initialize Gears,
we can create a database with a call like so:

db = google.gears.factory.create('beta.database', '1.0'");

Once we have a handle on our database, we can perform familiar commands upon it.
First, we open the database.

db.open ('database-demo') ;

Next, we execute a SQL statement to create a table to be used offline if it is not there:

db.execute ('create table if not exists todolist
(todonum int, todo varchar (255))"');

Later, we can perform normal SQL statements upon the database. For example, here we
issue a standard select statement and print out either a message that no data is available in
the case no rows are returned, or each row line by line until finished.

var todolist = document.getElementById('todolist');
todolist.innerHTML = '';

var rs = db.execute('select * from todolist order by todonum asc');
if (!rs.isValidRow())

todolist.innerHTML = "No items";

rs.close()

return;

}

while (rs.isValidRow())

{

todolist.innerHTML += rs.field(0) + ") "+ rs.field(l) +"
";
rs.next () ;

}

rs.close() ;

It is pretty clear we could build a simple to-do list maker since we have a local database.

We see this in Figure 10-13, and you can run the example at http:/ /ajaxref.com/ch10/
gearsdb.html.

1/10/08 3:43:29 PM

ch10.indd 543

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

/2 Chapter 10 : Google Gears Database - To Do - Windows Internet Explorer L =18 =]

% - I@, http:ffajaxref .comjch10fgearsdb. html j |‘__?| |z| IGoogIe |EE|

J File Edit Wiew Favorites Tools Help

vl (& chapter 10 : Google Gears Database - To Do | | J - - - b Page + (0f Tooks - =
Gears: Enabled | Database: Enabled =]

Google Gears Database Tester

New To Do
’7| Add To do |

To Do List

1) Finish the book

2) Get some sleep

3) Have some fun

4) Stop thinking about Ajax

Clear List |

=
|Done ’_ ’_ ’_ ’_ ’_ ’@ |@ Internet "i‘\ 100% - 2

Ficure 10-13 Gears offline database demo

In Chapter 9, we developed a full blown to-do list application to work with Ajax and
degrade nicely even without JavaScript. Here we aim to take this idea and try to make it
work offline, but we need to show how we might integrate the two.

It should be clear that the problem that will emerge when we merge these two ideas is
how to synchronize data between offline and online modes. For example, you make your
to-do items online and then go offline. You may continue to work, but when you come back
online you would want your to-do items to be synchronized up. We can opt between two
different approaches for handling this, a manual or more automatic approach.

Our thinking to pick one architectural approach over another is driven by how much we
want the user to be involved in the process and how connected we think we will be. For
example, if we assume that we are mostly connected, we may want more of a manual
approach where the user explicitly indicates they want to go offline and bring data down to
the local store. We might conversely assume a less connected state and perform tasks with
the assumption of being mostly offline and then synching up transparently as we note
connectivity being available.

To seamlessly slip between the offline and online mode, we modify the data handling of
our sample to-do list application to save the list data in our local Gears database, as well as
attempt to commit it online. In our sample to-do application, we assume a connected status
and modify our communication to save data locally as well. For example, when we go offline,

3

1/10/08 3:43:29 PM

544

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Part I1l1: Advanced Topics

our communication will fail so our library will invoke any onFail callback we have. We
modify our callback so that upon failure we write the change to our local database and set a
global dirty flag variable (g_dirty) that we use to signal that things are different offline than
they are online. If we fail, we also change the visual status to let the user know they are offline.

When requests are going through as normal, we call our onSuccess callbacks but we
still update our local data store with the same changes made online. Upon every successful
request, we have to assume the previous request might not have been successful and check
the dirty flag. If it indicates we are out of sync, we call a special sync function to make sure
both the local and online application state match. We also update our online status as up
when a request goes through. Simple usage of the to-do application on- and offline is shown
in Figure 10-14.

The code is a bit involved to present it in paper, so we suggest you trace it carefully
online. Entrance to this Gears application can be found at http:/ /ajaxref.com/ch10/
gearstodo.

Online making list edits Later go offline and continue to modify list
e JSTE
Fle Edt View Hstory Bookmarks Tooks Help Fle Edt View Hstory Bookmarks Tools Help [+]
e > @0ak Rp) (G e <) E D@ O @G i s [0 (Gl e 53]
Ajaxifed Todo List Ajaxifed Todo List
1. Hire 500 new henchmen 1. Hire 500 new henchmen
2. Pay moon base rent 2. Pay moon base rent
5 Fand St ot e b on s ES
4. Pepositt milion dollarg & X 4. Deposit 1 billion dollars
5. [Upgrade lair A/C HX
Add
Add
[Httifjajaref.comjch10/gearstodofistajax php#. [O [@vsow 35 ore [0 [Rww 35

Back online with successful delete request then list syncs

Hstory Bookmarks Took e

L

Ajaxifed Todo List

1. Hire 500 new henchmen
2. Pay moon base rent

3. Feed sharks with laser beams on heads
4. Upgrade lair A/C

=1o1x|
Ee Vew tHelp
Inspect Clear [Al HTML CS5 35 XR Images Flash (& |
Console HTML €55 Script DOM | Net | ¥siow Optons ~
& delete.php ‘ajaxref.com 17b L = B 312ms
@ syncohp sppret.con 7765 172ms
Zrequests 7935 avams.

[hetpiffajaxref. confchiojgearstodofdelete php. [0 [Bvsow 35

Ficure 10-14 To-do list, offline and on

ch10.indd 544

1/10/08 3:43:30 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond

Moving between offline and online modes introduces many architectural challenges for
a Web application. If the data set is small enough, we can do a mirroring concept, but for
larger data sizes this may not be possible. Some applications might need to synchronize
automatically, while others make more sense to be synched manually. In all cases, letting the
user know the status of the connection and the application state is paramount.

The power that Gears provides is quite exciting and, as we saw with our to-do list, the
Web is starting to intrude on the desktop. However, it would seem that if the desktop has an
install requirement, Gears doesn’t really change much. Simply put, as cool as this approach
is, having user’s install local proxy software on their systems is not likely over the long
haul, especially if we consider that, like everything we have seen in this advanced chapter,
the future is browser native!

Emerging Offline Possibilities with Firefox 3

ch10.indd 545

The Firefox 3 browser will likely be out by the time you read this and it has features in it to
assist in enabling offline access. First up is the ability to easily detect if you are offline or not
by looking at the Boolean value in navigator.onLine. Here we toggle a string value based
upon this value:

var condition = navigator.onLine ? "online" : "offline";

However, this won’t do us much good unless we can see when the user goes offline and
comes back. We certainly could use a timer and check this value every so often, but Firefox
3 also provides an event handler for the events off1ine and online that we bind to the
body element. The following simple example demonstrates the connection state.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Firefox 3 Connection Tester</title>

<link rel="stylesheet" href="http://ajaxref.com/chl0/global.css"
media="screen" />
<style type="text/css">
#status {height:20px; padding: 4px;
font-size: 12px;
color: white;
text-align:center;}
#status.online { background-color:green; }
#status.offline { background-color:red; }
</style>
<script type="text/javascript"s>
function updateOnlineStatus()

{

var condition = navigator.onLine ? "online" : "offline";

document .getElementById ("status") .className = condition;

document .getElementById ("state") .innerHTML = condition;
window.onload = function ()

45

1/10/08 3:43:30 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

B46 Part Il1l: Advanced Topics
updateOnlineStatus () ;
document .body.addEventListener ("offline", updateOnlineStatus, false);
document .body.addEventListener ("online", updateOnlineStatus, false);

}

</scripts>

<body>
<div id="status">Current status: </divs>
<div class="content"><h2>Firefox 3 Offline Tester</divs>

</body>

</html>

You can see this simple example at http://ajaxref.com/ch10/connectionstatus.html,
and it is shown in action here.

® Chapter 10: Firefox 3 Offline Tester - Gran Paradiso o] [

File Edit ‘iew History Bookmarks Tools Help ':::’

@ 7 @ =2 @ @ @ |D http: ffajaxref, comjchl0fconnectionskatus, hkml |v| ﬁ] |'|G00gle |L§l

Current status: online

Firefox 3 Connection State Tester

® Chapter 10: Firefox 3 Offline Tester - Gran Paradiso oy] [

File Edit Wiew History EBookmarks Tools Help {:’

@ v @' 2 @ @ @ |D http: ffajaxref. comichl0fconnectionskatus. hkrml |v| b] |'|Google |L-\§]

Current status: offline

Dane

Firefox 3 Connection State Tester

| Done 4

In Firefox 3, you can indicate that a resource should be made available for offline
consumption simply by setting a <1ink> tag value like so:

<link rel="offline-resource"
href="http://ajaxref.com/chl0/offlineimage.gif" />

These items will be loaded after the onload event has fired for the page, similar to how
prefetching mechanisms work. However, we can programmatically control the process on
our own by calling navigator.offlineResources.add (), passing it a URL string of
what we are interested in saving;:

navigator.offlineResources.add ("http://ajaxref.com/chl0/offlineimage.gif") ;

ch10.indd 546 1/10/08 3:43:30 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

Chapter 10: Web Services and Beyond 541

We can also remove items using navigator.offlineResources.remove (), passing it
the URL string of what we want to remove from the offline store:

navigator.offlineResources.remove ("http://ajaxref.com/chl0/offlineimage.gif") ;
For bulk removal use the clear () method:
navigator.offlineResources.clear(); // no more storage
As a list of resources we can look at the length of the of f1ineResources:
alert (navigator.offlineResources.length); // How many items
We can also look at particular items numerically:
alert (navigator.offlineResources.item(1l)); // What’s at position 1
And we can query the list to see if a particular URL is in the list:

if (navigator.offlineResources.has ("http://ajaxref.com/chl0/secretplans.html"))
alert ("The plans are safely saved offlinel!");

NOTE The process of saving files for offline use may take some time, and it is possible the user will
Qo offline before it is done. There are interfaces to address this possibility, but at the time of this
edition’s writing they are still somewhat in flux. Check Firefox’s documentation for the latest
information on navigator.pendingOfflineLoads and the load events associated with it.

An example similar to the Gears offline storage demo but using Firefox 3’s native offline
support is shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Firefox 3 Offline Browsing</title>

</head>

<script type="text/javascript"s

var prefix = "http://ajaxref.com/chlo/";

var filesToStore = ["offlinestorage.html" , "offlinepage.html"
"images/rufus.jpg" , "scripts/alert.js" 1;

function createStore()

{ .

var 1i;

for (var i=0; 1 < filesToStore.length; i++)
{
try {
navigator.offlineResources.add (prefix+filesToStore[i]) ;
} catch (e) { };
}
1

function removeStore ()

{

navigator.offlineResources.clear () ;

ch10.indd 547 1/10/08 3:43:31 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 10

548 Part I1l: Advanced Topics

document .getElementById ("responseOutput") .innerHTML ="The local store has been
removed. You may no longer be able to browse offline.";

}

window.onload = function () {

document .getElementById ('captureBtn') .onclick = function() {createStore();}
document .getElementById ('eraseBtn') .onclick = function() {removeStore();}

}

</scripts>

<body>

<h2>0ffline Browsing with Firefox 3</h2>

Visit Next Page

<form action="#">
<input type="button" id="captureBtn" value="Capture Files" />
<input type="button" id="eraseBtn" value="Erase Stored Files" />

</form>

<div id="responseOutput"s></divs>

</body>

</html>

We do not show the operation visually, as it is the same as the previous Gears example,
but you can try it for yourself in a Firefox 3 or better browser by visiting http:/ /ajaxref.
com/ch10/offlinestorage.html.

If Firefox 3 supported a local database, it would seem we could pretty much forego the
use of systems like Gears almost altogether. Interestingly, with globalStorage we might
be able to hack something together to do just that. However we might not need to with
SQLite built in to Firefox; maybe this will be exposed to browser JavaScript someday soon.

Regardless of the exact details of using Gears or native browser facilities, with the
emergence of offline support and all the other facilities we have seen in this chapter and earlier
in the book, it would appear the dream of viewing the browser as a development platform has
finally arrived—only about a decade later than when Netscape and others first proposed it!

Summary

In our final pages we took some time exploring some of the yet-to-be determined areas of Ajax
and client-side Web development. First we saw that given the same origin policy uncertainty
of Ajax, the role of direct client consumption of various Web Services using XHRs is not a
certainty at this point in time. Workarounds using <scripts> tags, while commonplace, do
have their concerns and lack a degree of control, which makes server proxies necessary. Ajax
isn’t really built yet for direct Web Services. Similarly, Ajax is intrinsically a pull-style
technology. Using various long polling techniques or bridging via binaries can provide the real
time update, but it is clunky. Comet isn’t on the developer’s lips just yet because the pattern
and supporting technology is still in its early stages of development, even compared to Ajax.
However, upcoming changes in browsers such as server-side event listeners show that big
changes might be coming soon. Finally, offline access on the desktop presents the final frontier
for Ajax—while still quite raw, once we get there, the difference between Web application and
desktop application melts away. However, Ajax developers might get more than they
bargained for: if users apply desktop presentation and quality expectations of Web software

to our Ajax applications, we might find we have quite a lot of interface work to do.

ch10.indd 548 1/10/08 3:43:31 PM

