
CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

3
XMLHttpRequest Object

The techniques discussed in the previous chapter use common JavaScript and XHTML
features, often in ways and for purposes other than those for which they were intended.
As such, these communication approaches generally lack necessary features for building

a robust Ajax-style application. Specifically, to build a proper Ajax-style application you will
need fine control over communication, including the ability to get and set HTTP headers, read
response codes, and deal with different kinds of server produced content. JavaScript’s
XMLHttpRequest (XHR) object can be used to address nearly all of these problems and thus
is at the heart of most Ajax applications. However, there are limitations to XHRs that should
be acknowledged, so in this chapter, the aim is to present not only a complete overview of
the object’s syntax and its use, but an honest discussion of its limitations as well.

Overview of XHRs
At the heart of Ajax is the XMLHttpRequest object. A bit misnamed, this object provides
generalized HTTP or HTTPS access for client-side scripting and is not limited to just making
requests or using XML, as its name would suggest. The facility was first implemented in
Internet Explorer 5 for Windows to support the development of Microsoft Outlook Web
Access for Exchange 2000, and this object has come to be widely supported in all major
desktop browsers. Native implementations can be found in Safari 1.2+, Mozilla 1+,
Netscape 7+, Opera 8+, and Internet Explorer 7+. ActiveX-based implementations are found
in Internet Explorer 5, 5.5, and 6. Browser support for XHRs is summarized in Table 3-1.

Given the ubiquity of the object, the W3C aims to standardize its syntax (http://www
.w3.org/TR/XMLHttpRequest/), though browser variations do exist, as you will see in a
moment. Table 3-2 summarizes the common properties and methods for the XHR object.

NOTE While XML prefixes the name of this object, its only major tie-in with XML is that responses
may be parsed as XML via the responseXML property. XML data interchange certainly is not
required by XHRs as will be demonstrated in numerous examples.

Like anything in a Web browser, specific features can be found in XHR objects, as shown
in Table 3-3. Why so much “innovation” occurs in Web developers is a matter of debate,
with some citing conspiracy and others simple acknowledging that we Web developers are
never satisfied with the status quo.

99

CHAPTER

ch03.indd 99 12/14/07 4:56:46 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 100 P a r t I : C o r e I d e a s 100 P a r t I : C o r e I d e a s

Browser Native ActiveX

Mozilla 1+ Yes No

Netscape 7+ Yes No

Internet Explorer 5 No Yes

Internet Explorer 5.5 No Yes

Internet Explorer 6 No Yes

Internet Explorer 7 Yes Yes

Opera 8+ Yes No

Safari 1.2+ Yes No

TABLE 3-1 XMLHttpRequest Object Support by Browser

Property Description

readyState Integer indicating the state of the request, either:
 0 (uninitialized)
 1 (loading)
 2 (response headers received)
 3 (some response body received)
 4 (request complete)

onreadystatechange Function to call whenever the readyState changes

status HTTP status code returned by the server
(e.g., “200, 404, etc.”)

statusText Full status HTTP status line returned by the server (e.g.,
“OK, No Content, etc.”)

responseText Full response from the server as a string

responseXML A Document object representing the server’s response
parsed as an XML document

abort() Cancels an asynchronous HTTP request

getAllResponseHeaders() Returns a string containing all the HTTP headers the server
sent in its response. Each header is a name/value pair
separated by a colon and header lines are separated by a
carriage return / linefeed pair.

getResponseHeader(header
Name)

Returns a string corresponding to the value of the
headerName header returned by the server
(e.g., request.getResponseHeader("Set-cookie")

TABLE 3-2 Common Properties and Methods of the XMLHttpRequest Object

ch03.indd 100 12/14/07 4:56:46 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 101

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 101
PART I

Property Description

open(method, url [,
asynchronous [, user,
password]])

Initializes the request in preparation for sending to the
server. The method parameter is the HTTP method to use,
for example “GET” or “POST”. The value of method is not
case sensitive. The url is the relative or absolute URL the
request will be sent to. The optional asynchronous parameter
indicates whether send() returns immediately or after the
request is complete (default is true, meaning it returns
immediately). The optional user and password arguments are
to be used if the URL requires HTTP authentication. If none
are specified and the URL requires authentication, the user
will be prompted to enter it.

setRequestHeader(name,
value)

Adds the HTTP header given by the name (without the colon)
and value parameters.

send(body) Initiates the request to the server. The body parameter
should contain the body of the request, i.e., a string
containing fieldname=value&fieldname2=value2… for POSTs
or a null value for GET request.

TABLE 3-2 Common Properties and Methods of the XMLHttpRequest Object (continued)

Property or Method Description Browser Support

onload Event triggered when whole
document has finished
loading, similar to looking at
onreadystatechange when
the readyState value is 4.

Firefox 1.5+

onprogress Event triggered as partial
data becomes available. The
event will fire continuously
as data is made available.

Firefox 1.5+

onerror Event triggered when a
network error occurs.

Firefox 1.5+ (still buggy
as of Firefox 2)

overrideMimeType(‘mime-type’) Method takes a string for
a MIME type value (for
example, text/xml) and
overrides whatever MIME
type is indicated in the
response packet.

Firefox 1.5+, Opera
(buggy)

TABLE 3-3 Browser-specific XHR Properties and Methods

ch03.indd 101 12/14/07 4:56:47 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 102 P a r t I : C o r e I d e a s 102 P a r t I : C o r e I d e a s

With a basic syntax overview complete, let’s continue our discussion with concrete
examples of XHRs in use.

Instantiation and Cross Browser Concerns
From the previous section, it is clear that there are inconsistencies in browser support for
XHRs. Many browsers support the XMLHttpRequest object natively, which makes it quite
simple to instantiate.

var xhr = new XMLHttpRequest();

This code is all that is required to create an XHR in browsers such as Firefox 1+, Opera 8+,
Safari 1.2+, and Internet Explorer 7+, but what about older Internet Explorer browsers,
particularly IE6?

ActiveX XHR Anxiety
In the case of older Internet Explorer browsers (5, 5.5, and 6), the XHR object is instantiated
a bit differently via the ActiveXObject constructor and passing in a string indicating the
particular Microsoft XML (MSXML) parser installed. For example:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

would attempt to instantiate the oldest form of the MSXML parser. As Internet Explorer
matured and other software needed XML support, various other editions of MSXML were
made available. Table 3-4 shows the standard relationships between IE and the XML
ActiveX version supported.

Based upon this data, most Ajax libraries thus also use the program ID strings “Msxml2.
XMLHTTP.3” and “Msxml2.XMLHTTP” to instantiate an ActiveX-based XHR object. Yet it is
possible that other versions of MSXML outside those listed in Table 3-4 may also be available
because of operating system or applications installed on a client system, and you might opt
to use them. However, proceed with caution. For example, MSXML 4 is buggy, and MSXML 5

Internet Explorer Version MSXML Version (file version)

5.0a 2.0a (5.0.2314.1000)

5.0b 2.0b (5.0.2614.3500)

5.01 2.5a (5.0.2919.6303)

5.01 SP1 2.5 SP1 (8.0.5226)

5.5 2.5 SP1 (8.0.5226)

5.5 SP2 2.5 Post-SP2 (8.00.6611.0)

6.0 3.0 SP2 (8.20.8730.1)

6.0 SP1 3.0 SP3 (8.30.9926.0)

TABLE 3-4 Internet Explorer—MSXML Relationship

ch03.indd 102 12/14/07 4:56:47 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 103

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 103
PART I

should be avoided as it is focused on the scripting needs of MS Office Applications and will
trigger an ActiveX security dialog when used in Internet Explorer.

At the time of this edition’s writing, MSXML 6, which is provided with Vista, is the most
up to date and standards-compliant XML parser released by Microsoft. However, if you are
running Vista or have installed IE7 you won’t need to know this for basic Ajax duties as the
browser can use the native XHR. Given the room for confusion as to what ActiveX XHR
possibilities are available, a simple testing program is provided for you to see what is
supported by your browser. The script is quite straight forward and simply tries a variety of
ways to instantiate the XHR object, as well as enumerate its properties and methods. A few
captures of this script in action are shown in Figure 3-1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest Object Tester</title>
<script type="text/javascript">

function XHRTester()
{
 var nativeXHR = false;
 var activeX = "";
 var commObject = null;
 try
 {
 commObject = new XMLHttpRequest();
 nativeXHR = true;
 }
 catch(e) {}

 /*
 * Testing purposes only. See createXHR wrapper for adopted pattern
 * If you use "MSXML2.XMLHTTP.5.0" you will be prompted by IE so it is
 * omitted here
 */
 var activeXStrings = ["Msxml2.XMLHTTP.6.0", "Msxml2.XMLHTTP.4.0",
 "Msxml2.XMLHTTP.3.0", "Msxml2.XMLHTTP",
 "Microsoft.XMLHTTP"];

 for (var i=0; i < activeXStrings.length; i++)
 {
 try {
 commObject = new ActiveXObject(activeXStrings[i]);
 activeX += activeXStrings[i] + ", ";
 }
 catch (e) { }
 }

ch03.indd 103 12/14/07 4:56:47 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 104 P a r t I : C o r e I d e a s 104 P a r t I : C o r e I d e a s

 var userAgent = navigator.userAgent;
 var result = "";
 if (activeX === "" && !nativeXHR)
 result += "None";

 if (nativeXHR)
 result += "Native" ;

 if (activeX !== "")
 {
 activeX = activeX.substring(0,activeX.length-2);
 result += " ActiveX [" + activeX +"]";
 }
 var message = "Browser: " + userAgent +
 "
Supports: " + result;
 return message;
}
</script>
</head>
<body>
<h1>XHR Support Tester</h1>
<hr />
<script type="text/javascript">
 document.write(XHRTester());
 if (window.XMLHttpRequest)
 {
 document.write("<h3>Enumerated Properties (and Methods in Some
Browsers)</h3>")
 var XHR = new window.XMLHttpRequest();
 for (var aprop in XHR)
 document.write("XMLHttpRequest."+aprop + "
");
 }
</script>
</body>
</html>

NOTE There is some skepticism in the Web development community about the purity of the native
implementation of XHRs in IE7. You’ll note, as shown by the previous example, that things like
object prototypes do not work on XHRs in IE7. In the prerelease versions, even adding instance
properties (expandos) seemed to be problematic, though no longer in the final release.

Because Internet Explorer 7 still supports the legacy ActiveX implementation of
XMLHTTP as well as the native object, you need to be a bit careful. While the benefit of this
side-by-side installation of XML implementations is that older legacy applications using
only ActiveX will not have to be rewritten, scripts may incur unneeded performance hits in
newer versions of IE unless you are careful. When creating an XHR, make sure to always try
native first before invoking ActiveX as it is more efficient, particularly if you are going to be
creating many objects for individual requests. Furthermore, if you play with various
settings in your Internet Explorer 7 browser, you will see that ignoring the legacy ActiveX

ch03.indd 104 12/14/07 4:56:48 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 105

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 105
PART I

FIGURE 3-1 Various browsers reporting XHR support

ch03.indd 105 12/14/07 4:56:48 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 106 P a r t I : C o r e I d e a s 106 P a r t I : C o r e I d e a s

FIGURE 3-1 Various browsers reporting XHR support (continued)

ch03.indd 106 12/14/07 4:56:49 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 107

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 107
PART I

FIGURE 3-1 Various browsers reporting XHR support (continued)

ch03.indd 107 12/14/07 4:56:49 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 108 P a r t I : C o r e I d e a s 108 P a r t I : C o r e I d e a s

FIGURE 3-1 Various browsers reporting XHR support (continued)

ch03.indd 108 12/14/07 4:56:50 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 109

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 109
PART I

FIGURE 3-1 Various browsers reporting XHR support (continued)

ch03.indd 109 12/14/07 4:56:50 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 110 P a r t I : C o r e I d e a s 110 P a r t I : C o r e I d e a s

approach may not be the best course of action. Consider that it is possible for the user to
turn off native XMLHttpRequest under the Advanced tab of Internet Options, which will
then only allow for an ActiveX XHR.

More likely, it is possible that the user has turned off ActiveX support in Internet
Explorer by adjusting their security settings, as shown next.

Of course, it might be possible that the user disables both features but somehow keeps
JavaScript on. In this case, it is necessary to degrade to an alternate JavaScript communication
mechanism from the previous chapter, degrade to a standard post-and-wait style form of

ch03.indd 110 12/14/07 4:56:51 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 111

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 111
PART I

communication, or provide some error message and potentially block the user from the site or
application. Architecturally, this can introduce some complexity to the design of your
application. We will take up this expansive topic in Chapter 9.

Given that you can disable XHRs in Internet Explorer, you might wonder if it is possible
to do the same in other browsers. Opera and Safari do not appear to support a way to disable
XHRs without disabling all JavaScript. In Firefox, you can modify the browser’s capabilities
in a very fine grain manner. For example, to disable XHRs you could disable the open()
method for the object. To accomplish this, first type about:config in Firefox’s address bar.
Next, right-click and create a new string. Name the property capability.policy.
default.XMLHttpRequest.open and set the value to be noAccess. You should now find
that XHRs are denied. Likely someone will modify Firefox to make it easy to do this by the
time you read this, but regardless, you can see it is possible to slice out just the feature of
JavaScript you need to.

NOTE It is also possible to disable XHRs by modifying your browser’s user.js file (or creating a new
one) and adding the line

user_pref("capability.policy.default.XMLHttpRequest.open", "noAccess").

A Cross-Browser XHR Wrapper
Given the previous discussion, if you wanted to do a quick and dirty abstraction for XHRs
and didn’t care so much about making sure to address the very latest ActiveX based XHR
facility, you might just use a ? operator, like so:

var xhr = (window.XMLHttpRequest) ?
new XMLHttpRequest() : new ActiveXObject("MSXML2.XMLHTTP.3.0");

or you could attempt to make older IEs look like they support native XHRs with code
like this:

// Emulate the native XMLHttpRequest object of standards compliant browsers
if (!window.XMLHttpRequest)
 window.XMLHttpRequest = function () {
 return new ActiveXObject("MSXML2.XMLHTTP.3.0"); }

If there was some concern about this code in non-IE browsers, you could employ the
conditional comment system supported in Jscript to hide this override.

/*@cc_on @if (@_win32 && @_jscript_version >= 5)

if (!window.XMLHttpRequest)
 window.XMLHttpRequest = function() { return new
ActiveXObject("MSXML2.XMLHTTP.3.0"); }
@end @*/

We opt instead to write a simple wrapper function createXHR() ,so that other techniques
can easily be added if ever required. In this implementation, first the native instantiation is
attempted followed by the most supported ActiveX solutions eventually returning null if
nothing can be created.

ch03.indd 111 12/14/07 4:56:51 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 112 P a r t I : C o r e I d e a s 112 P a r t I : C o r e I d e a s

function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

To create a cross-browser XHR object, all you need to do is call the wrapper function and
make sure it returns something.

var xhr = createXHR();
if (xhr)
 {
 // Engage the XHR!
 }

Now with XHR in hand it is time to use it to make a request.

NOTE There is a Java-based browser called IceBrowser that supports an alternate form of XHR
creation, window.createRequest(), which you could have added to your wrapper. Other
esoteric browsers may also use alternative XHR syntax, but we avoid promoting such esoteric
oddities except to make you aware of their possible existence.

XHR Request Basics
Once the XHR object is created, most of the cross-browser concerns subside—for the
moment, at least. To invoke an XHR request, all browsers use the same syntax:

xhr.open(method, url, async [,username, password])

where method is an HTTP method like GET, POST, HEAD. While these values are not case-
sensitive, they should be in uppercase as per the HTTP specification. The parameter url is the
particular URL to call and may be either relative or absolute. The async parameter is set to
true if the request is to be made asynchronously or false if it should be made synchronously.
If not specified, the request will be made asynchronously. The optional parameters username
and password are used when attempting to access a resource that is protected with HTTP
Basic authentication. We will explore that later in the chapter, but these parameters won’t be
very useful given the way browsers implement this feature.

Synchronous Requests
We start the discussion of XHR-based communication with the simplest example: performing
a synchronous request. In this particular case, first, the wrapper function is used to create an
XHR. Next a connection is opened using the syntax presented in the previous section. In this
case, the URL is set to a very basic PHP program that will echo back the IP address of the
user accessing it and the local server time. Finally, the request is sent on its way by invoking

ch03.indd 112 12/14/07 4:56:51 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 113

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 113
PART I

the XHR’s send() method. It should be noted at this point that the URL requested must be
within the same domain, using the same port and the same protocol from which a page is
served. Browsers will deny other requests as breaking the same-origin policy. More details
can be found on this and other security concerns in Chapter 7. Also note that a null value is
sent in this particular example because there is no data to submit in the message body. When
using POST to send data later in this chapter, that will not be the case. To keep things simple,
the raw response is used and accessed via the XHR’s responseText property and then added
to the page using standard DOM methods. To be precise, innerHTML isn’t actually isn’t as of
yet a W3C specified DOM property, but it is so ubiquitously supported, it is often assumed to
be. The complete example is shown here with a communication trace in Figure 3-2.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Synchronous Send</title>
<link rel="stylesheet" href="http://ajaxref.com/ch3/global.css"
type="text/css" media="screen" />

FIGURE 3-2 Simple synchronous request

ch03.indd 113 12/14/07 4:56:52 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 114 P a r t I : C o r e I d e a s 114 P a r t I : C o r e I d e a s

<script type="text/javascript" >
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

function sendRequest()
{
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.style.display = "";
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", false);
 xhr.send(null);
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 }
}

window.onload = function ()
{
 document.requestForm.requestButton.onclick = function () { sendRequest(); };
};
</script>
</head>
<body>
<form action="#" name="requestForm">
 <input type="button" name="requestButton" value="Send Synchronous Request" />
</form>

<div id="responseOutput" class="results" style="display:none;"> </div>
</body>
</html>

The PHP code that responds to this request is quite simple and the only details have to
do with the cache control issues that will be discussed shortly.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");

$ip = GetHostByName($_SERVER['REMOTE_ADDR']);
echo "Hello user from $ip it is " . date("h:i:s A") . " at the Ajaxref.com server";
?>

Of course, this previous example isn’t really Ajax if you are a stickler for the precise
meaning of the acronym as it used synchronous communication and no XML; it was Sjat
(Synchronous JavaScript and Text), if you want to be precise. All jesting aside, it is important

ch03.indd 114 12/14/07 4:56:52 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 115

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 115
PART I

to note the implications of the synchronous communication. The browser, in effect, blocks
on the line xhr.send(null) until the communication returns. Given the possibility
for network delays and problems, this probably isn’t the way to go except for important
transactions. You can demonstrate this for yourself by running the example at
http://ajaxref.com/ch3/syncsendslow.html. This example will block on the server for
five seconds, giving plenty of time to note that your browser won’t let you do anything
else. While the asynchronous requests discussed in the next section do not exhibit such
problems, they do introduce extra complexity to address.

Asynchronous Requests
To make the previous example perform its request asynchronously, the first change is to set
the appropriate flag in the open() method.

xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", true);

However, where to put the code to handle the returned data is not immediately obvious.
To address the response, a callback function must be defined that will be awoken as the
response is received. To do this, associate a function with the XHR’s onreadystate property.
For example, given a function called handleResponse, set the readystatechange
property like so:

xhr.onreadystatechange = handleResponse;

Unfortunately, when set like this is it not possible to pass any parameters to the callback
function directly and thus it tends to lead to the use of global variables. Instead, use an
inner function called a closure to wrap the function call and any values it might use or be
passed, like so:

xhr.onreadystatechange = function(){handleResponse(xhr);};

Now the handleResponse function is going to get called a number of times as the request
is processed. As the function is called, it is possible to observe the progress of the request by
looking at the XHR’s readyState property. However, at this point in the discussion the focus
is simply on knowing when the request is done as indicated by a readyState value of 4. Also,
it is important that the HTTP request must be successful as indicated by a status property
value of 200 corresponding to the HTTP response line “200 OK”. The handleResponse
function shown next shows all these ideas in action.

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 responseOutput.style.display = "";
 }
}

ch03.indd 115 12/14/07 4:56:53 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 116 P a r t I : C o r e I d e a s 116 P a r t I : C o r e I d e a s

The complete example is now shown. It also can be found online at http://ajaxref.com/
ch3/asyncsend.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Asynchronous Send</title>
<link rel="stylesheet" href="http://ajaxref.com/ch3/global.css"
type="text/css" media="screen" />
<script type="text/javascript">
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

function sendRequest()
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}
function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 responseOutput.style.display = "";
 }
}
window.onload = function ()
{
 document.requestForm.requestButton.onclick = function () { sendRequest();
};
};
</script>
</head>
<body>

<form action="#" name="requestForm">
 <input type="button" name="requestButton"
 value="Send an Asynchronous Request" />

ch03.indd 116 12/14/07 4:56:53 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 117

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 117
PART I

</form>

<div id="responseOutput" class="results" style="display:none;"> </div>

</body>
</html>

Obviously, given the “browser lock-up” limitation presented in the previous section,
you might want to try http://ajaxref.com/ch3/asyncsendslow.html to prove to yourself the
value of using asynchronous communication. However, do note that with this power comes
a price as now you must keep track of the connections made and make sure that they return
in a timely fashion and without errors. You will also find that, if the ordering of requests
and responses matter, asynchronous communication introduces much more complexity
than may be expected. The richer network provides Ajax tremendous power and flexibility,
but should not be trifled with. We’ll begin to present some of these issues in more detail
when we discuss readyState and status more in-depth later in this chapter and much
more detail will be provided in Chapter 6 which discusses network concerns. For now, let’s
expand the XHR examples by transmitting some data to the server.

Sending Data via GET
As mentioned in the previous chapter, data can be sent via any HTTP GET request by adding
the data to send to a query string in the URL to send to. Of course, the same is also true in the
case of XHR-based communication, just create the XHR object and set it to request the
desired URL with a query string appended, like so:

var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET","http://ajaxref.com/ch3/setrating.php?rating=5",true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

As you can see, it is quite easy to make a request but it is still necessary to respect the
encoding concerns and make the payload URL safe, as well as acknowledge that there are
limits to the amount of data that can be passed this way. As previously mentioned in
Chapter 2, when passing more than a few hundred characters, you should start to worry
about the appropriateness of the data transfer method. We revisit the rating example of the
previous chapter done with an XHR communication mechanism for your inspection.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Sending Data with GET Query Strings </title>
<script type="text/javascript">
function encodeValue(val)
{

ch03.indd 117 12/14/07 4:56:54 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 118 P a r t I : C o r e I d e a s 118 P a r t I : C o r e I d e a s

 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,"+");
}
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}
function sendRequest(url, payload)
{
 var xhr = createXHR();

 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = xhr.responseText;
 }
}
function rate(rating)

ch03.indd 118 12/14/07 4:56:54 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 119

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 119
PART I

{
 var url = "http://ajaxref.com/ch3/setrating.php";
 var payload = "rating=" + encodeValue(rating);

 sendRequest(url, payload);
}
window.onload = function ()
{
 var radios = document.getElementsByName("rating");
 for (var i = 0; i < radios.length; i++)
 {
 radios[i].onclick = function (){rate(this.value);};
 }
};

</script>
</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="#" method="get">
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It
</form>

<div id="responseOutput"> </div>
</body>
</html>

Sending Data via Post
Sending data via an HTTP POST request is not much more difficult than the GET example—
a welcome change to the iframe examples of the previous chapter. First, change the call to
open() to use the POST method.

xhr.open("POST",url,true);

Next, if sending any data to the server, make sure to set a header indicating the type of
encoding to be used. In most cases, this will be the standard x-www-form-urlencoded
format used by Web browsers doing form posts.

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

A common mistake is to omit this header, so be careful to always add it with the
appropriate encoding value when transmitting data via POST.

ch03.indd 119 12/14/07 4:56:54 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 120 P a r t I : C o r e I d e a s 120 P a r t I : C o r e I d e a s

Then, like the previous asynchronous example, a callback function must be registered,
but this time when initiating the request using the send() method, pass the payload data as
a parameter to the method.

xhr.send("rating=5");

The previous example’s sendRequest function is now easily modified use the POST method:

function sendRequest(url, payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("POST",url,true);
 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(payload);
 }
}

An example of XHR based POST requests in action can be foundat http://ajaxref.com/
ch3/post.html.

NOTE While most likely all POST requests will be set to use application/x-www-form-
urlencoded content encoding, it is possible to set just about any desired encoding method.
Chapter 4 will present an in-depth discussion of many possible request and response data formats
and their use with XHRs.

Request Headers
One thing that was sorely missing from the traditional JavaScript communication methods
was the ability to control requests, particularly setting any needed headers. As seen in the
previous POST example, XHRs provide a method setRequestHeader() to do just that.
The basic syntax is like so:

xhr.setRequestHeader("header-name", "header-value");

where header-name is a string for the header to transmit and header-value a string for the
corresponding value. Both standard and custom headers can be set with this method.
Following HTTP conventions, when setting custom headers, the header would typically be
prefixed by an “X-”. For example, here a header that indicates the JavaScript transport
scheme used is set to show an XHR was employed.

xhr.setRequestHeader("X-JS-Transport", "XHR");

The setRequestHeader() method can be used multiple times and, when behaving
properly, it should append values.

xhr.setRequestHeader("X-Client-Capabilities", "Flash");
xhr.setRequestHeader("X-Client-Capabilities", "24bit-color");

// Header should be X-Client-Capabilities: Flash, 24bit-color

ch03.indd 120 12/14/07 4:56:55 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 121

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 121
PART I

As shown in the previous section, the most likely known HTTP headers, particularly the
Content-Type header, will be needed when posting data.

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

This method is also useful with GET requests to set headers to influence cache control in
browsers that inappropriately (or appropriately) cache XHR requests. This directive can be
performed on the client side by setting If-Modified-Since HTTP request header to some
date in the past, like so:

xhr.setRequestHeader("If-Modified-Since", "Wed, 15 Nov 1995 04:58:08 GMT");

This is just another common example of the setRequestHeader() method. We will
explore cache control quite a bit in Chapter 6.

Given the previous discussion of custom headers, you might wonder what would
happen if you try to add to or even change headers that maybe you shouldn’t. For example,
can the Referer header be changed to look like the request is coming from another location?

xhr.setRequestHeader("Referer", "http://buzzoff.ajaxref.com");

How about the User-Agent header? Or how about actions that might be useful, like
adding other Accept header values? Unfortunately, you’ll see in the next section that the
belief that XHR support is the same in browsers is not quite all it is cracked up to be.

Request Header Headaches
According to the emerging XMLHttpRequest specification from the W3C, for security
reasons, browsers are supposed to ignore the use of setRequestHeader() for the headers
shown in Table 3-5.

Also, when setting the headers in Table 3-6, the values specified by setRequestHeader()
should replace any existing values.

Finally, all other headers set via this method are supposed to add to the current value
being sent, if defined, or create a new value if not defined. For example, given:

xhr.setRequestHeader("User-Agent", "Ajax Browser ");

data should be added to the existing User-Agent header, not replace it.
While the specification may indicate one thing, the actual support in browsers for setting

headers seems to be, in a word, erratic. For example, the Referer header is sent in XHR
requests by Internet Explorer, Safari, and Opera, but it is not settable as per the specification
by these browsers. However, some versions of Firefox (1.5) do not send the header normally
and allow you to set it. For other headers, the situation may be the opposite, with Firefox

Accept-Charset Date TE

Accept-Encoding Host Trailer

Content-Length Keep-Alive Transfer-Encoding

Expect Referer Upgrade

TABLE 3-5 setRequestHeader Values That Should Be Ignored

ch03.indd 121 12/14/07 4:56:55 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 122 P a r t I : C o r e I d e a s 122 P a r t I : C o r e I d e a s

conforming or coming close and the others not doing so. Figure 3-3 shows the results of
testing the common browsers at this edition’s writing; the complete results can be found at
http://ajaxref.com/ch3/requestexplorerresults.php.

Very likely, this situation is going to change as browser vendors start shoring up the
details and inconsistencies when developers start really exercising XHRs. Rather than rely
on results at one point in time, run the script at http://ajaxref.com/ch3/
requestexplorerscript.html yourself. By doing so, you help keep the chart automatically
updated until these details are worked out by the browser vendors. You may also find it
useful to use a browser HTTP debugging tool or run the Request Explorer at http://ajaxref
.com/ch3/requestexplorer.php to experiment with header values.

Other HTTP Requests
While most of time, GET and POST will be used in Ajax communication, there is a richer set
of HTTP methods that can be used. For security reasons, many of these may be disabled on
your server. You may also find that some methods are not supported in your browser, but
the first request method, HEAD, should be available in just about any case.

Head Requests
The HTTP HEAD method is used to check resources. When making a HEAD request of an
object, only the headers are returned. This may be useful to check for the existence for
something, the size of something, or to see if it has been recently updated before committing
to fetch or use the resource. Syntactically, there isn’t much to do differently versus previous
examples save setting the method differently, as shown here:

var url = "http://ajaxref.com/ch3/headrequest.html";
var xhr = createXHR();

if (xhr)
 {
 xhr.open("HEAD", url, true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

Authorization Delta-Base If-Unmodified-Since

Content-Base Depth Max-Forwards

Content-Location Destination MIME-Version

Content-MD5 ETag Overwrite

Content-Range From Proxy-Authorization

Content-Type If-Modified-Since SOAPAction

Content-Version If-Range Timeout

TABLE 3-6 setRequestHeader Values That Should Replace Existing Values

ch03.indd 122 12/14/07 4:56:55 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 123

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 123
PART I

FIGURE 3-3 Browser setRequest Header Support Circa 2007

ch03.indd 123 12/14/07 4:56:56 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 124 P a r t I : C o r e I d e a s 124 P a r t I : C o r e I d e a s

However, in the handleResponse function, it wouldn’t be useful to look at the responseText
or responseXML properties. Instead getAllResponseHeaders() or getResponseHeader()
would be used to look at particular returned header values. These methods will be discussed
shortly, but if you want to try a HEAD request, try http://ajaxref.com/ch3/head.html or use
the Request Explorer (http://ajaxref.com/ch3/requestexplorer.php), which can reveal very
interesting results.

Method Madness
The XMLHttpRequest specification indicates that user-agents supporting XHRs must
support the following HTTP methods: GET, POST, HEAD, PUT, DELETE, and OPTIONS.
However, it also states that they should support any allowable method. This includes the
various WebDAV (www.webdav.org) methods such as MOVE, PROPFIND, PROPPATCH,
MKCOL, COPY, LOCK, UNLOCK, POLL, and others. In theory, you might even have your
own methods, though that wouldn’t be safe on the Web at large as it would likely get
filtered by caches or Web application firewalls encountered during transit. Even while
avoiding anything too radical, testing methods beyond GET, POST, and HEAD with XHR in
various browsers, the results were found to be a bit inconsistent.

Some browsers, like Opera and Safari, reject most extended methods, turning them into
GETs if not understood or supported. This is very bad because it will potentially trigger
server-side problems and produce totally unexpected behavior. In the case of Internet
Explorer, it throws errors when trying to feed it methods it doesn’t know. This is a more
reasonable approach though, per the specification, it is still wrong. On the plus side, IE does
support all the WebDAV methods, which are heavily used in Outlook Web Access. Firefox
seems the closest to the emerging specification. It allows other methods, including WebDAV
methods or even your own custom defined methods, though you’d obviously have to have
a server with an ability to handle any custom created methods.

To see what your browser currently supports, we encourage readers to play with the
Request Explorer at http://ajaxref.com/ch3/requestexplorer.php and shown in Figure 3-4.
You can use it to set any type of method, header, and payload combination that may
interest you.

Response Basics
We have alluded to handling responses in order to demonstrate making requests with
XHRs. However, this discussion has omitted a number of details, so we present those now.

readyState Revisited
As shown in the callback functions, the readyState property is consulted to see the state of
an XHR request. The property holds an integer value ranging from 0–4 corresponding to the
state of the communication, as summarized in Table 3-7.

It is very easy to test the readyState value moving through its stages as the callback
function will be invoked every time the readyState value changes. In the following code,
the value of the readyState property is displayed in alert dialog as the request goes along.

var url = "http://ajaxref.com/ch3/helloworld.php";
var xhr = createXHR();
if (xhr)

ch03.indd 124 12/14/07 4:56:56 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 125

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 125
PART I

FIGURE 3-4 Exploring method support in XHR implementations

ch03.indd 125 12/14/07 4:56:56 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 126 P a r t I : C o r e I d e a s 126 P a r t I : C o r e I d e a s

 {
 alert("Before open method: readyState: " + xhr.readyState);
 xhr.open("GET",url,true);
 xhr.onreadystatechange = function(){alert("In onreadystatechange
function: readyState: " + xhr.readyState);};
 xhr.send(null);
 }

The alert is useful as it blocks the progress of the request so you can watch the process
closely. However, if you want to see the progress of a request in a more real-time style, try
the example at http://ajaxref.com/ch3/readystate.html, which is displayed here:

Like many of the details of XHRs readyState, values can be a bit quirky depending
on the code and browser. For example, mysteriously, a readyState value of 2 may not be
seen in Opera browsers, at least in version 9 or before. Moving the position of the
onreadystatechange assignment, very different results will be experienced. Most of

readyState Value Meaning Description

0 Uninitialized The XHR has been instantiated, but the open()
method has not been called yet.

1 Open The XHR has been instantiated and the open()
method called, but send() has not been invoked.

2 Sent The send() method has been called, but no headers
or data have been received yet.

3 Receiving Some data has been received. Looking at headers or
content. This phase of loading may cause an error in
some browsers and not in others.

4 Loaded All the data has been received and can be looked at.
Note that the XHR may enter this state in abort and
error conditions.

TABLE 3-7 readyState Values

ch03.indd 126 12/14/07 4:56:56 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 127

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 127
PART I

these are relatively harmless, save one in Internet Explorer that will break the object’s
functionality. To demonstrate this, first use a global XHR and set the onreadystatechange
in the wrong place, in this case before the open() method. The readyState for the XHR
object will not work properly on the second and subsequent uses, as demonstrated here:

Run: 1

Run: 2

Interestingly, the various quirks of the readyState value are rarely felt in practice since
most folks are looking solely for the final 4 value. However, you’ll see later in the chapter
that it is actually possible in some browsers and situations to look at data as it is loaded as
opposed to waiting for the final readyState value to be reached.

readyState Needs Time to Change
One particularly important aspect of asynchronous communication related to the
onreadystatechange functionality is the simple fact that in browser-based JavaScript,
callback functions cannot be invoked until the script interpreter has a free moment to do
so. There is no suspend and resume aspect to JavaScript execution in the typical single-
threaded style implemented in Web browsers, so if you make a request and then enter into
heavy calculations or other blocking activity, control will not be handed back long enough
for the interpreter to invoke the readyState value change and the callback function
will not be invoked. You can prove this to yourself by trying to run the example at
http://ajaxref.com/ch3/longprocess.html, but given the difficulty in forcing the issue you
might rather watch a movie that shows this situation in action at http://ajaxref.com/ch3/
longprocessmovie.html.

ch03.indd 127 12/14/07 4:56:57 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 128 P a r t I : C o r e I d e a s 128 P a r t I : C o r e I d e a s

With the increased interest in JavaScript from Ajax, we may see the eventual introduction
of thread control or features like continuations that may allow for a more suspend-interrupt-
continue style of coding. For the moment, however, you should be mindful that you may
have to wait to get your data until your browser has a moment to deal with it.

status and statusText
After the readyState value has indicated that some headers have been received, the next
step is to look at the success or failure of the response by looking at the XHR’s status and
statusText properties. The status property will contain the numeric HTTP status value such
as 200, 404, 500, and so on, while the statusText property will contain the corresponding
message or reason text like “OK”, “Not Found”, “Unavailable”, “No Data”, and so on.

Very often, the use of these values in Ajax applications is a bit rudimentary, usually
looking to make sure that the XHR’s response status value is 200 (as in 200 OK) and in all
other cases failing, like so:

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 // consume the response
 }
}

However, you might also opt to add more intelligence to your Ajax application based upon
the status value. For example, given some errors like a 503 “Service Unavailable” returned
when a server is busy, you might decide to automatically retry the request for the user after
some time period. You also may find that some status values suggest letting the user know
what exactly is happening rather than just raising an exception with a vague message about
“Request Failed” as seen in some examples online. To restructure the callback function, you
might first check for readyState and then carefully look at status values, like so:

function handleResponse(xhr)
{
 if (xhr.readyState == 4)
 {
 try {
 switch (xhr.status)
 {
 case 200: // consume response
 break;
 case 403:
 case 404: // error
 break;
 case 503: // error but retry
 break;
 default: // error
 }
 }
 catch (e) { /* error */ }
 }
}

ch03.indd 128 12/14/07 4:56:57 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 129

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 129
PART I

Yet, as you’ll see next, even if you are very aware of typical HTTP status codes, it may
not be enough under some conditions.

Unusual Status Values
As we are always reminded, any number of network problems can arise on the Internet.
Some implementations of XHRs provide odd status values that can be useful under such
extreme conditions. Internet Explorer implements the status values shown in Table 3-8,
which are useful to detect error conditions.

You should note that these status codes do not relate to any standard HTTP status codes
and are actually used to indicate TCP level problems as reported back to WinInet, which is
used by Internet Explorer to drive XHRs. These values give the application level programmer
some insight into what is going on with the connection so they can decide to handle things
gracefully. You can see http://msdn2.microsoft.com/en-us/library/aa385465.aspx for a
complete list of these codes, but Table 3-8 presents what you will likely encounter in practice.

Standard or not, IE’s unusual codes seem useful, but what about other browsers—how
do they react to network problems? Consider, for example, what happens if a connection
doesn’t go through due to the server being down or some problem with the network route.
Firefox will eventually call onreadystatechange and even set the state to 4, but checking
the value of status will raise an exception. Opera will also set readyState to 4, but the status
will have a value of 0. IE will set readyState to 4 as well, but will inform us with the status
code of 12029 what happened. You could add a try-catch block to deal with this problem.

 if (xhr.readyState == 4)
 {
 try {
 if (xhr.status == 200)
 {
 // consume response
 }
 }
 catch (e) {alert("Network error");}
 }

Those are detected easily enough; use try and catch to handle the exception.

IE status Property Value Corresponding statusText Value

12002 ERROR_INTERNET_TIMEOUT

12007 ERROR_INTERNET_NAME_NOT_RESOLVED

12029 ERROR_INTERNET_CANNOT_CONNECT

12030 ERROR_INTERNET_CONNECTION_ABORTED

12031 ERROR_INTERNET_CONNECTION_RESET

12152 ERROR_HTTP_INVALID_SERVER_RESPONSE

TABLE 3-8 Internet Explorer Special status Values

ch03.indd 129 12/14/07 4:56:57 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 130 P a r t I : C o r e I d e a s 130 P a r t I : C o r e I d e a s

Other situations might not be so easy. What happens if there is a network problem or
server crash midrequest? Internet Explorer will inform you of such problems with a status
value of 12152 or potentially 12031, but browsers like Firefox may report things incorrectly,
particularly if some headers have come back already. There may even be a 200 code sitting
in the status property and a readyState of 4 with no reasonable data to work with!

If the server disconnects and other errors can result in 200 status codes, it would seem
quite difficult to handle things under edge cases. How do you really know an Ajax request
is successful if such cases are possible? You could try to look to see if there is content in
responseText and inspect it very carefully with appropriate try-catch blocks.

204 Status Quirks and Beyond
The use of 204 No Data responses can be quite useful in applications that just “ping” a server
and don’t necessarily need a response with data. While the use of this type of response is
common in traditional JavaScript communication patterns with XHRs, there are some
troubling quirks. For example, in Opera you will have a 0 status and may not invoke
onreadystatechange properly, while in Internet Explorer you will receive the odd status
value of 1223. Like much of what you have seen in this chapter, when it comes to details you
shouldn’t take much for granted. To explore how your browser reacts to various status codes,
use the Request Explorer on the book support site and enable “Force Status.” You won’t get
any data back, but you will be able to evaluate the headers and readyState values.

responseText
The responseText property holds the raw text of a response body, not including any headers.
Despite the name suggesting differently, XHRs are actually neutral to data format. Just about
anything can be passed back and held in this property from plain text to XHTML fragments to
comma separated values, JavaScript or, as some have demonstrated, even encoded binary style
data. The example http://ajaxref.com/ch3/responsetextmore.html, shown in Figure 3-5,
proves this point as it provides a way to receive the same response in a variety of formats.

We’ll look at the particulars of data formats used in Ajax in the next chapter, but for now
the main point to take away is that responseText holds the raw unprocessed response
from the server, which could be just about any text format you can dream up.

Another interesting aspect to the responseText property is that it can be polled
continuously as data is received and that data can be utilized before it is complete in some
browsers. Since this is not supported everywhere, this is discussed in the section entitled
“onProgress and Partial Responses” later in the chapter when we discuss the proprietary,
emerging, and inconsistently supported features of XHRs.

NOTE While Ajax is somewhat neutral on data type, it is not on character set. UTF-8 is the default
character encoding in most XHR implementations.

responseXML
While responseText is a very flexible property, there is a special place for XML in the heart
of XMLHttpRequest objects: the responseXML property. The idea with this property is that
when a request is stamped with a MIME type of text/xml, the browser will go ahead and
parse the content as XML and create a Document object in the object that is the parse tree of

ch03.indd 130 12/14/07 4:56:57 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 131

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 131
PART I

the returned markup. With most analysis tools, it is easy enough to see the raw XML text, or
you can peak at the whole body by looking at responseText.

FIGURE 3-5 XHR’s responseText property allows for a multitude of data formats

ch03.indd 131 12/14/07 4:56:58 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 132 P a r t I : C o r e I d e a s 132 P a r t I : C o r e I d e a s

However, it is not so easy to see the parse tree so we
show a simple example here of a walked
responseXML parse tree output to the document.

You can access this example at http://ajaxref
.com/ch3/responsexmlwalk.html.

Assuming there is a correctly MIME-stamped and
well-formed XML packet, its DOM tree should be in
the responseXML property, begging the question:
how do you consume the response data? Very often,
people will use DOM methods to extract bits and
pieces of the content returned. The document.
getElementsByTagName() method might be used to
find a particular tag and extract its contents. For
example, given a packet that looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
<pollresults>
 <rating>4</rating>
 <average>2.98</average>
 <votes>228</votes>
</pollresults>

as the response payload, it is possible to extract the data items with the following code:

var xmlDoc = xhr.responseXML;
var average = xmlDoc.getElementsByTagName("average")[0].firstChild.nodeValue;
var total = xmlDoc.getElementsByTagName("votes")[0].firstChild.nodeValue;
var rating = xmlDoc.getElementsByTagName("rating")[0].firstChild.nodeValue;

Doing a straight walk of the Document tree is also an option if you understand its
structure. In order to look for the average node in the previous example, you might walk
directly to it with:

var average = xmlDoc.documentElement.childNodes[1].firstChild.nodeValue;

Of course, this type of direct walk is highly dangerous, especially if you consider that
the DOM tree may be different in browsers, particularly Firefox, as it includes whitespace
nodes in its DOM tree (http://developer.mozilla.org/en/docs/Whitespace_in_the_DOM).
Normalizing responses to account for such a problem is a possibility, but frankly both of
these approaches seem quite messy. JavaScript programmers familiar with the DOM should
certainly wonder why we are not using the ever-present document.getElementById()
method or some shorthand $() function, as provided by popular JavaScript libraries. The
simple answer is, as it stands right now, you can’t with an XML packet passed back to an
XHR. The id attribute value is not supported automatically in an XML fragment. This
attribute must be defined in a DTD or schema with the name id and type ID. Unless an id
attribute of the appropriate type is known, a call to document.getElementById() method
will return null. The sad situation is that, as of the time of this book’s writing, browsers are
not (at least by default) directly schema- or DTD-aware for XML data passed back from an
XHR. To rectify this, it would be necessary to pass any XHR received XML data to a DOM
parser and then perform selections using document.getElementById. Unfortunately, this

ch03.indd 132 12/14/07 4:56:58 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 133

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 133
PART I

cannot be done effectively in a cross-browser fashion, as will be demonstrated in Chapter 4.
It is possible, however, to perform a hard walk of a tree looking for the attribute of interest,
which certainly isn’t elegant but will work. If you are looking for ease of node selection in
XML, you might turn to related technologies like XPath to access returned data and XSLT to
transform. This topic will be covered more in the next chapter, but for now note simply that
there is more than a bit of work involved in handling XML data in many cases, thus the
increased developed interest in text, HTML fragments, and JSON formatted data.

XML Challenges: Bad MIME Types
One important question that should come to mind when working with responseXML is what
happens if the MIME type of the data returned is not text/xml? Does the browser populate
the responseXML and, if so, can you safely look at it? Using a simple example that changes
the MIME type on the returned packet, you can see that this is yet another example of browser
variation. Most of the browsers will not parse the response unless it is stamped with text/xml
or application/xml, though interestingly Opera will seem to attempt to parse just about
anything you received, even something with a completely bogus MIME type.

If you attempt to look at responseXML after the data has loaded from a non-XML MIME
type, what happens will vary by browser. Placing a simple if statement that looks for
existence on the responseXML property will indicate a problem in Firefox, but not in the other
browsers. A far better way to do things is to first look at the response header to make sure the
Content-type: returned is appropriate. You may be tempted to do something as simple as:

if (xhr.getResponseHeader("Content-Type") == "text/xml")
 {
 // use XML response
 }

However, note that the returned MIME type may be more than text/xml and contain
information about the character encoding used like so: text/xml;charset=utf-8. In this
case you would probably need a statement more like this:

if (xhr.readyState == 4 && xhr.status == 200)
 {
 if (xhr.getResponseHeader("Content-Type").indexOf("text/xml") >= 0)
 {
 var xmlDoc = xhr.responseXML;
 // use XML response
 }
 }

If you also want to address application/xml, you will need to add further code. Yet
even if the response is stamped correctly it says very little about if the content is well
formed or valid.

XML Challenges: Well Formedness and Validity
If an XML packet is not well formed, meaning it doesn’t follow XML’s syntax rules such as
not crossing elements, quoting attribute values, matching an element’s name case, properly
closing elements including empty elements, and addressing special characters, the
responseXML value will not be populated with a DOM tree. However, looking in Firefox,
you will find DOM nodes inside the responseXML property even in such a case because the

ch03.indd 133 12/14/07 4:56:58 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 134 P a r t I : C o r e I d e a s 134 P a r t I : C o r e I d e a s

parser returns an XML tree with a root node of <parsererror> that contains information
about the parse error encountered, as shown in Figure 3-6.

Assuming no syntactical errors are made in the XML, you might desire to dive in and start
using the data, but that begs yet another question: is the actual returned data valid? What this
means is it is important to not only look to make sure that the various tags found in the
response are syntactically well formed, but also whether they are used properly according to
some defined Document Type Definition (DTD) or schema. Unfortunately, by default XHR
objects do not validate the contents of the responses. This can be addressed by invoking a
DOM parser locally in some browsers like Internet Explorer, but in others it isn’t possible to
validate at all, which eliminates some of the major value of using XML as a data transmission
format. We will pursue this issue in greater detail when data formats are covered in the next
chapter, but to explore all the variations of MIME types, well formedness, and validity now,
you can use the example at http://ajaxref.com/ch3/xmlrequestexplorer.html.

XML Challenges and Benefits
There are a number of other challenges facing those who wish to use XML as a response format
even beyond what has been mentioned here. XML may be a bulkier format and need
compression and for large data sets may have local parsing time consideration. Partial
responses are pretty much out of the question when using XML, but obviously there aren’t
only downsides to the format. The various tools such as Xpath and XSLT to consume the
received content are quite powerful. Further, the ability to generally validate the syntactical

FIGURE 3-6 responseXML parse tree in Firefox on error

ch03.indd 134 12/14/07 4:56:59 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 135

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 135
PART I

and semantic integrity of a received data packet is certainly quite appealing. Yet our goal in this
chapter is primarily to focus on the XHR object itself, so let’s return to that discussion directly.

Response Headers
XHRs have two methods to read response headers: getResponseHeader(headername)
and getAllResponseHeaders(). As soon as the XHR has reached readyState 3, it
should be possible to look at the response headers that have been returned by the server.
Here are two simple examples:

xhr.getResponseHeader("Content-Length"); // fetches a single header
xhr.getAllResponseHeaders(); // fetches all the headers

Some possible values are shown next:

Both methods return strings, but note that in the case of multiple headers, the results will
contain \n for newlines.

If you plan on placing the headers in an XHTML page, you will have to convert the \n to
break tags or use some other preformatting mechanism to output them nicely to the screen.

var allHeaders = xhr.getAllResponseHeaders();
allHeaders = allHeaders.replace(/\n/g, "
");

Looking at edge cases, there are only minor variations in browsers. For example, attempting to
fetch a header that does not exist with getResponseHeader(), may result in a slight difference
in what is returned. Firefox returns null, while IE returns nothing. Given the loose typing system
of JavaScript, this difference likely won’t be noted. Both browsers agree what to do when you
attempt to invoke these methods before headers are available: throw a JavaScript error.

Controlling Requests
The XMLHttpRequest object has fairly limited ability to control requests once they’re sent
outside the abort() method. This method provides the basic functionality of the stop button
in the browser and will very likely be used in your Ajax applications to address network
timeouts. For example, you might imagine that you can write a cancelRequest() function

ch03.indd 135 12/14/07 4:56:59 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 136 P a r t I : C o r e I d e a s 136 P a r t I : C o r e I d e a s

that will set a timer to be invoked after a particular period of time of nonresponsiveness from
the server.

function sendRequest(url,payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
// set timeout for 3 seconds
timeoutID = window.setTimeout(function() {cancelRequest(xhr);}, 3000);
}

function cancelRequest(xhr)
{
 xhr.abort();
 alert("Sorry, your request timed out. Please try again later.");
}

Unfortunately, this won’t work quite correctly because once the request is aborted, the
readyState value will be set to 4 and the onReadyStateChange handler will have to be
called. There might be a partial response, or even an incorrect status message as mentioned
in the previous sections, and then the onReadyStateChange handler might inadvertently
use it. To address this potential problem, there will likely need to be a flag to indicate if a
request has been aborted. For example, as a simple demo, a global variable, g_abort, is
created to indicate the abort status. After creating the XHR, it is set to false.

g_abort = false;

Within the request cancellation function, the abort flag is set to true for later use.

function cancelRequest(xhr)
{
 g_abort = true;
 /* we have to use this variable because after it aborts,
 the readyState will change to 4 */
 xhr.abort();
 alert("Sorry, your request timed out. Please try again later.");
}

Now when handleResponse gets invoked because the readyState has changed, nothing
is done based upon the true value of the abort flag.

function handleResponse(xhr)
{
 if (!g_abort)
 {
 if (xhr.readyState == 4)
 {
 clearTimeout(timeoutID); // don’t want to timeout accidentally
 switch (xhr.status)

ch03.indd 136 12/14/07 4:56:59 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 137

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 137
PART I

 {
 // handle response
 }
 }
 }
}

To see this idea in action, visit the example at http://ajaxref.com/ch3/abort.html. We
will cover techniques for handling timeouts and other network problems in much more
depth in Chapter 6.

NOTE It is not really correct to manually force a connection to go away by nulling out various
aspects of the request object or callback function or overwriting an existing XHR with another
request. It may have a similar feeling to the end user in some cases because a callback won’t
happen, but any changes may still happen on the server as the request, once sent, still happened.

Authentication with XHRs
In the course of building applications, you often want to restrict access to certain resources,
such as particular directories or files. A simple form of authentication called HTTP Basic
Authentication may be implemented on the Web server resulting in a browser challenging
a user like so:

ch03.indd 137 12/14/07 4:57:00 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 138 P a r t I : C o r e I d e a s 138 P a r t I : C o r e I d e a s

The XMLHttpRequest object supports HTTP authentication in that it allows specification
of a username and password in the parameters passed to the open() method.

xhr.open("GET", "bankaccount.php", true, "drevil", "onemillion$");

Of course, you will need to make sure that such a request runs over SSL if you are
worried about password sniffing during the transmission. Furthermore, you wouldn’t likely
hardcode such values in a request, but rather collect this data from a user via a Web form.

Interestingly, while the open() method accepts credentials passed via parameter, those
credentials are not automatically sent to the server upon first request in all browsers. Opera
sends it this way. Internet Explorer does not and waits until the server challenges the client
for credentials with a 401 - Access Denied response code. You can see that in the
communication trace presented in Figure 3-7. Otherwise, Internet Explorer 7 acts just as you
would expect and does not throw any user prompts regardless of correctness or incorrectness
of authentication attempt. Other browsers like Opera and Firefox may not act so graceful
when authentication fails; they may present the browser’s normal challenge dialogs to the
user despite the authentication being handled by an XHR. However, in all cases, once the
authentication is verified in whatever manner, the onreadystatechange function gets
called with readyState equal to 4 as expected.

There may also be a variety of problems in browsers even with successful authentication
tries. Numerous older versions of Opera and Firefox and, in some cases, newer versions did
throw user challenges up even on successful tries, which defeats the whole purpose of using
this method. Yet in other installations and operating system combinations, they did not
exhibit such problems.

Given the inconsistency of how HTTP authentication is handled in XHRs, you are
advised to avoid it and use your own form of user credential checking. However, if for
some reason you must use it, you should thoroughly test the state of authentication support
in browsers yourself by running the code at http://ajaxref.com/ch3/authentication.html.

ch03.indd 138 12/14/07 4:57:00 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 139

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 139
PART I

Propriety and Emerging XHR Features
Given the intense interest in Ajax, the XMLHttpRequest object is starting to be exercised a
great deal more than it has been in the past. Admittedly, the object is missing useful features
and lacks some capabilities to deal with common problems with the network or received
content. Without a strong specification, the browser vendors are adding various innovations
to the object at a furious pace. It is pretty likely that this section will not cover all the
features that may have been added by the time you read this, but we cover those that are
currently implemented in shipping or prerelease browsers, and later in the chapter point
out what is likely to come.

FIGURE 3-7 Internet Explorer XHR authentication communication trace

ch03.indd 139 12/14/07 4:57:00 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 140 P a r t I : C o r e I d e a s 140 P a r t I : C o r e I d e a s

Managing MIME Types
It is very important for Ajax applications that any called server-side code correctly set the
MIME type of the returned data. You must always remember if the XHR object receives a
data stream with a Content-type: header not set to text/xml it shouldn’t try to parse
and populate the responseXML property. If that happens and you go ahead and try to
access that property anyway and perform DOM manipulations, you will raise a JavaScript
exception. If content is being retrieved that is truly a particular MIME type (like text/
xml) and for some reason can’t be set properly server-side, it is possible to rectify this in
Firefox and Opera by using the overrideMimeType() method. Usage is fairly simple; set
this method to indicate the desired MIME type before sending the request, and it will
always treat the response as the MIME type specified, regardless of what it is. This is
demonstrated here:

var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET", url, true);
 xhr.overrideMimeType("text/xml");
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

The communications trace here shows that the browser is passed content with format
text/plain that is then overriden to text/xml so that it is parsed.

ch03.indd 140 12/14/07 4:57:00 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 141

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 141
PART I

You might wonder about the value of such a method given that typically you will be
responsible for forming the data packet to be consumed by the client-side JavaScript. Sorry
to say, proper MIME type usage is not something that many server-side developers have
paid enough attention to. The main reason for this is that browsers, particularly Internet
Explorer, are a bit too permissive in what they do with incorrect MIME types, so developers
often are not forced to get the details right. Internet Explorer will often flat out ignore MIME
types, instead peeking inside the response packet to decide what it is and favoring that over
any Content-type header value encountered. As an example, you can serve a file as text/
plain, but if you have some HTML tags in the first few lines of the file, Internet Explorer
will happily render it as HTML, while more conformant browsers will not and display the
file properly as text. You can see this in Figure 3-8.

Setting MIME types incorrectly on a Web server or in programs has lead to numerous
“works in browser X but not in browser Y” errors that the author has observed, including
something as common as Flash content being handled differently in various browsers.
Readers are encouraged to get this particular detail right in the server side of their Ajax
application to avoid headaches and the need for methods like overrideMimeType(). An
overrideMimeType() example can be found at http://ajaxref.com/ch3/overridemime.html.

Multipart Responses
Some browsers like Firefox support an interesting property called multipart that allows
you to handle responses that come in multiple pieces. Traditionally this format was used in
an ancient Web idea called server push, where data was continuously streamed from the
Web server and the page was updated. In the early days of the Web, this type of feature was
used to display changing images, simple style video, and other forms of ever-changing
data. Today you still see the concept employed in Webcam pages where images refresh
continuously.

ch03.indd 141 12/14/07 4:57:01 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 142 P a r t I : C o r e I d e a s 142 P a r t I : C o r e I d e a s

Looking at a communication trace of a multipart response, you can see chunks of
individual data with size and boundary indicators, as shown here:

FIGURE 3-8 Internet Explorer and Firefox deal with MIME types differently

ch03.indd 142 12/14/07 4:57:01 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 143

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 143
PART I

With Firefox, it is possible to set the multipart property of an XHR instance to true to
enable support for this format. Since this is a proprietary feature, you will likely set the
onload event handler, which fires when data is loaded (readyState = 4), but you should
also be able to set onreadystate change approach for your callback as well, if you like.

var url = "http://ajaxref.com/ch3/multipart.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.multipart = true;
 xhr.open("GET", url, true);
 xhr.onload = handleLoad;
 xhr.send(null);
 }

When the data is received, just look at it as a normal XHR, though given the format, you
will likely be only using responseText.

function handleLoad(event)
{
 document.getElementById("responseOutput").style.display = "";
 document.getElementById("responseOutput").innerHTML +=
"<h3>xhr.responseText</h3>" + event.target.responseText;
}

To see this example working under supporting browsers, visit http://ajaxref.com/ch3/
multipart.html.

onProgress and Partial Responses
Firefox already implements a few useful event handlers for the XMLHttpRequest object. The
most interesting is the onprogress handler, which is similar to readyState with a value of
3 but is different in that it is called every so often and provides useful information on the
progress of any transmission. This can be consulted to not only look at the responseText as
it is received, but also to get a sense of the current amount of content downloaded versus the
total size. The following code snippet sets up an XHR to make a call to get a large file and
associates a callback for the onprogress handler:

var url = "http://ajaxref.com/ch3/largefile.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.onprogress = handleProgress;
 xhr.open("GET", url, true);
 xhr.onload = handleLoad;

 xhr.send(null);
 }

The handleProgress function receives an event object that can be examined to determine the
progress made versus the total size, as well as to access the received content in responseText.

function handleProgress(e)
{

ch03.indd 143 12/14/07 4:57:01 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 144 P a r t I : C o r e I d e a s 144 P a r t I : C o r e I d e a s

 var percentComplete = (e.position / e.totalSize)*100;

 document.getElementById("responseOutput").style.display = "";
 document.getElementById("responseOutput").innerHTML += "<h3>reponseText -
" + Math.round(percentComplete) + "%</h3>" + e.target.responseText;
}

This Firefox-specific example can be run at http://ajaxref.com/ch3/partialprogress.
html and should be quite encouraging because it suggests that there will be a time in the
near future when we will be able to very quickly get an accurate sense of request progress
beyond a spinning circle animated GIF.

NOTE A limitation of using XML responses is that you cannot look at partial responses. The reason
for this is that an entire XML packet is required for parsing the tree properly.

Partial Responses with readyState
It is possible to perform the same partial data example using a timer to wake up every so
often and look at responseText. In this case, the callbacks are set to wake up every 50ms
using either setTimeout() or setInterval(). The callbacks then handle the partial data.

var url = "http://ajaxref.com/ch3/largefile.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET", url, true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 window.setTimeout(function() {handlePartialResponse(xhr);}, 50);
}

In handlePartialResponse we look at the responseText field to grab whatever data has
been provided. We can also look at the Content-Length response header, assuming it is
provided to calculate the percentage progress.

function handlePartialResponse(xhr)
{
 if (xhr.readyState == 3)
 {
 document.getElementById("responseOutput").style.display = "";

 var length = xhr.getResponseHeader("Content-Length");
 var percentComplete = (xhr.responseText.length / length)*100;

 document.getElementById("responseOutput").innerHTML += "<h3>reponseText -
" + Math.round(percentComplete) + "%</h3>" + xhr.responseText;
 }

 /* wake up again in 50ms to handle more data if not done now */
 if (xhr.readyState != 4)
 window.setTimeout(function() {handlePartialResponse(xhr);}, 50);
}

ch03.indd 144 12/14/07 4:57:02 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 145

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 145
PART I

The results of this example are in Figure 3-9, which looks pretty much the same as the
previous example. To see if this technique works in your browser try the example found at
http://ajaxref.com/ch3/partialreadystate.html.

NOTE Internet Explorer 7 and before cannot use the readyState to access partial data as it disallows
looking at responseText when you are in readyState 3 or before.

Other Firefox Event Handlers
Firefox also implements the onload and onerror event handlers for XHRs. The onload
handler is a convenience feature and corresponds to onreadystatechange reaching a
readyState value of 4. Given that most developers just use this readyState value, this is
an obvious change and certainly is a bit less cryptic than the integer codes. It also is
beneficial because you do not have to use closures to access the XHR object, which certainly
makes coding life more pleasant.

The onerror seems a promising feature as well and would be invoked when a network
error occurs. Unfortunately, this handler doesn’t seem to work properly yet and is poorly
documented. Until it is fixed, you will likely need to trap network errors using status codes,
creating timeouts, and using try-catch blocks as we have already alluded to in this
chapter; these will be presented in more depth in Chapter 6.

FIGURE 3-9
Partial data
consumption is
possible in some
browsers.

ch03.indd 145 12/14/07 4:57:02 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 146 P a r t I : C o r e I d e a s 146 P a r t I : C o r e I d e a s

XHR Arcana and Future Changes
If you dig around enough in browser documentation or write code to reflect the innards of the
XHR object, you might find things you don’t expect. For example, Internet Explorer supports
responseBody and responseStream properties to get access to raw encoded response data.
While this sounds quite interesting, there is no way to use JavaScript to utilize these features.
Firefox has similar things lurking around, such as the channel property, which represents the
underlying channel communication mechanism used in Mozilla to make the request. If you
inspect it with Firebug, you will see it contains a variety of interesting values about the
network request and appears to have a variety of methods to control it. However, you will
not be able to access these items in a typical JavaScript application as they require elevated
privileges. You’ll also find scant documentation on exactly what everything does and what
the various numeric values mean, so if you like to hunt for arcane knowledge this will
certainly keep you busy.

While we don’t know for sure what the future holds for XHRs, it isn’t too hard to guess
that, given the excitement around Ajax, there is likely to be great innovation with the
XMLHttpRequest object, for better or worse. Looking at the emerging specification discussion,
listening to various browser vendors, and simply thinking about what is missing, you see a
few likely areas for change, including:

• More request header related methods like getRequestHeader() and
removeRequestHeader()

• Some way to deal with byte streams

• A method to invoke cross-domain XMLHttpRequests that can break the same origin
restriction without using a service proxy

• New event handlers like onabort, ontimeout, on-particular types of errors

• Features to support offline content availability

• Features to support client-side session management

While the previous list is just speculation, until a browser vendor commits to it, don’t be
surprised if you see a few of these things implemented either natively or in some Ajax
extension library that you may encounter.

As we wind down the chapter, we have a few more things that should be covered. First
we need to see a few common problems people run into with XHRs and then finally present
a full example to put everything into context.

XHR Implications and Challenges
Besides dealing with all the cross-browser syntax concerns that have been presented, there
are still numerous coding-specific challenges facing an aspiring Ajax developer.

• Handling Network Problems The network is really what makes Ajax interesting
and is where you will face many of the most difficult challenges. You saw already
that dealing with network errors and timeouts is not yet intrinsically part of XHRs,
though it really should be. We have but scratched the surface of the edge case
possibilities that may range from incomplete and malformed responses, the need for
timeouts, retries, and more meaningful indication of network conditions and
download progress. We present this in great detail in Chapter 6.

ch03.indd 146 12/14/07 4:57:02 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 147

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 147
PART I

• Managing Requests Handling many simultaneous requests can be a bit tricky if
you use a global XHR object. With this style of coding, any request in progress will
be overwritten if a new request is opened with an existing object. However, beyond
such a basic problem, you will certainly encounter difficulties when handling many
simultaneous requests. First, may be limitations in browsers as to the number of
network requests that can be made to a particular domain at once. In all standard
configured browsers it is a mere two. Second, if the requests are dependent on each
other, you may be forced to implement some form of queuing and locking mechanism
to make sure that requests are handled in the right order. Now we have reached a
difficult aspect of coding known as concurrent programming.

• User Interface Improvements The improved data availability and page changing
possibilities with JavaScript and Ajax have a large impact on user interface design.
Once you employ XHRs and build a more responsive Web application, be prepared
to adopt new interface conventions to fully take advantage of the newfound power.
Usually Ajax is coupled with much richer user interface conventions such as drag-
and-drop, type-ahead, click-to-edit, and many others. We will briefly touch on some
of these in examples throughout the book, especially in Chapter 8.

• Degrading Gracefully A big question is whether we should allow older browsers
and even search bots that don’t support XHRs to access our Ajax-driven site or
application. Yet even if these user-agents are rejected, what happens if XHR support
is disabled in modern browsers by a user out of security paranoia? How are you
going to degrade gracefully or at least inform users of limitations they may face
without XHR support? You saw in the previous chapter that it is possible to perform
Ajax-style communication without XHRs, so maybe you should employ these
techniques in such conditions? You’ll see over the next few chapters that building
very resilient web application architecture is possible, but it takes more than a bit of
planning. We’ll wrap up that discussion in Chapter 9.

• A Need for JavaScript and Ajax Libraries You may wonder why, with so many Ajax
libraries available, you bothered studying the underlying properties and methods of
XHRs? Why not just adopt a popular library and let it hide all the details from you?
Frankly, there are so many of them it is tough to choose, and you don’t want to learn
examples for a library that isn’t supported in the future. At the time of this edition
there are literally 200+ Ajax-related libraries and toolkits to choose from! Be prepared
to be shocked if you evaluate some of these offerings to find that a number of the ideas
presented in this chapter are not handled, and quite a number from the following
chapters are certainly not. So don’t be fooled by nice UI widget demos during your
evaluations until you are certain they aren’t layered upon an XHR facility that isn’t
browser quirk network edge case aware enough. To help you understand such
considerations, we’ll develop a sample library of our own starting in Chapter 5, but
don’t take this as a definitive suggestion to only roll your own or use ours; we certainly
believe that well-supported libraries will ultimately be the way to go.

We certainly didn’t fully cover each of these issues since most require large sections or
complete chapters for an adequate discussion and are more appropriately found in later
chapters. However, we will finish the section with a complete discussion of one Ajax-related
issue that is quite misunderstood—closures and memory leaks.

ch03.indd 147 12/14/07 4:57:02 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 148 P a r t I : C o r e I d e a s 148 P a r t I : C o r e I d e a s

Ajax and Memory Leaks
Ajax doesn’t cause memory leaks. We need to get that out in the open right away. Misuse of
JavaScript coupled with a bad garbage collection implementation in one browser is where
the cause of this misconception truly lies. The skeptical reader may wonder why then have
you only heard of such problems since Ajax became popular? The answer is that generally
JavaScript wasn’t used enough and you didn’t stay on a page long enough to encounter the
problem. Consider that you likely may have had memory leaks in your pre-Ajax
applications but since you were posting and repainting pages fairly often, you might not
have been executing code long enough to leak too much memory. Now with Ajax you see
the problem more often, but folks who used JavaScript for games and building Web editors
have been quite aware of JavaScript memory challenges for a number of years. So you
probably wonder: where do these memory leaks come from? There is no simple answer.
There are bugs as well as user-caused memory leaks, but in the case of Ajax you are likely
facing trouble in Internet Explorer 5, 5.5, and 6 because of event handlers and closures.

Exploring Closures
A closure is an inner function in JavaScript that becomes available outside of the enclosing
function and thus must retain variable state to act in a meaningful way. For example,
consider the following function:

function outer()
{
 var x = 10;
 function inner() { alert(x); }
 setTimeout(inner, 1000);
}
outer();

When you run this code fragment, the function outer is invoked and has a locally
scoped function inner that will print out the variable. This inner function will be called in
one second, but you will have left the outer function by the time the inner function is
called, so what would the value of x be? Because of the way JavaScript binds the values of
the needed variables to the function, it will actually have a value in x of 10 at the time the
inner is invoked.

This gets quite interesting if you note when these bindings actually happen. Consider
the following code, which resets the value of x.

function outer()
{
 var x = 10;
 function inner() { alert(x); }
 setTimeout(inner, 1000);

ch03.indd 148 12/14/07 4:57:03 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 149

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 149
PART I

 x = "Late to the party!";

}
outer();

It might be surprising to you, since the timeout and the reassignment happens after the
function is defined, that the value of x is the string value “Late to the party!” as shown here.
This shows that the inner function is not just copying the value of the variable x but also
holds a reference to that variable.

Do not assume that closures are related solely to timeouts and other asynchronous
activity such as what Ajax thrives on. The following little example shows you could just as
easily use them when doing high-order JavaScript programming when you return functions
as values for later use:

function outer()
{
 var x = 10;
 var inner = function() { alert(x); }
 x = "Late to the party!";
 return inner;
}
var alertfunction = outer();
alertfunction();

You have seen closures throughout this chapter. Every time we make an XHR, we assign
a function to be called back upon a readyState value change and we want to capture the
local variable associated with the created XHR for reference.

function sendRequest(url,payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

Note that the variable xhr is local to the function sendRequest but through the closure
is made available to the handleResponse callback function.

Beyond such a rudimentary example of closures, you will also encounter such constructs
all over typical Ajax applications because of the need of setting up various event handlers to
address user activity in a richer user interface. This is where the trouble begins.

ch03.indd 149 12/14/07 4:57:03 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 150 P a r t I : C o r e I d e a s 150 P a r t I : C o r e I d e a s

Closures and Memory Leaks
Internet Explorer has a problem freeing memory and closures when there are circular
references. A circular reference is when one object has a pointer that points to another object
and that object creates a reference back to the first. There are other ways to make such a
cycle, of course, but the place that we most often see circular references is in event handlers
where the event handling function references the bound node that the event was triggered
upon. For example, a mouse click against a particular form element references a function
that then references back to that particular form element that the event was captured upon.
The example here creates the number of <div> tags you specify, with event handlers
referencing each.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>Chapter 3 : Memory Leak Tester</title>
<script type="text/javascript" language="javascript">
 function createDivs()
 {
 var countSpan = document.getElementById("countSpan");
 var numDivs = document.requestForm.numberDivs.value;
 var oldNumDivs = parseInt(countSpan.innerHTML,10);
 var newNumDivs = oldNumDivs + parseInt(numDivs,10);
 if (newNumDivs > 0)
 {
 for (var i=oldNumDivs; i<newNumDivs; i++)
 {
 createClosure(i);
 }
 countSpan.innerHTML = newNumDivs;
 }
 }

 function createClosure(i)
 {
 var div = document.createElement("div");
 div.id = "leakydiv" + i;
 div.onclick = function() { this.innerHTML = "Clicked"; };
 document.body.appendChild(div);
 }
 window.onload = function ()
 {
 document.requestForm.requestButton.onclick = createDivs;
 };
</script>
</head>
<body>
<form action="#" name="requestForm">
 Number of Divs: <input type="text" name="numberDivs" />
 <input type="button" name="requestButton" value="Make Leaky Div(s)" />

ch03.indd 150 12/14/07 4:57:03 PM

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 151

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 151
PART I

</form>

<hr />
0 Created Divs
</body>
</html>

This simple example will begin to leak memory in versions of Internet Explorer 6 and
before, which can’t handle the circular references setup. You can see that in the capture
shown here from a memory leak tool for Internet Explorer appropriately called Drip:

From this simple example, you can see a small amount of memory being leaked each
time the button is clicked, but it does not seem too big of a deal because of the small amount
of memory leaked. However, imagine this on a larger scale. In Ajax applications, there may
be hundreds of event handlers. If each of these contains a circular reference, it can be enough
to crash to the older versions of Internet Explorer. If you have Internet Explorer 6 or before
around and want to try crashing your browsers, simply adjust the number of <div> tags to
make to 200,000 or more and you will likely crash regardless of the gigabytes of RAM you
may have.

Closures and memory leaks are actually the least of your worries. You’ll see in the
upcoming chapters that Ajax-style programming is going to introduce significant challenges
from dealing with network, security, and interface concerns you may have been able to
avoid before. So in the next chapter, let’s finish one more core topic, data formats, before we
vigorously tackle these challenges.

ch03.indd 151 12/14/07 4:57:03 PM

CompRef8 / AJAX: The Complete Reference / Thomas Powell / 216-4 / Chapter 3

 152 P a r t I : C o r e I d e a s

Summary
The XMLHttpRequest object is the heart of most Ajax applications. This useful object
provides a general purpose facility for JavaScript to make HTTP requests and read the
responses. It does not force the use of XML as payload, as we will discuss greatly in the next
chapter, though it does provide some conveniences for dealing with XML in the form of the
responseXML property, which will automatically parse any received XML data.

The syntax of the XHR object is somewhat of an industry de facto standard at the moment,
with browser vendors implementing the core syntax introduced initially by Microsoft. For
basic usage, the browser vendors are pretty consistent in their support; however, in the details,
there is quite a bit of variation across browsers in areas such as XHR object instantiation,
header management, ready states, status codes, extended HTTP methods, authentication, and
error management. Browser vendors have also already begun to introduce proprietary
features, some of which are quite useful, but sadly not widely supported.

Based upon the various quirks and inconsistencies presented at the point of this book’s
writing in 2007, readers are duly warned that they should not take the details of XHRs for
granted and should be cautious with any Ajax communication library they may adopt.
Fortunately, the W3C has begun the standardization process which should eventually bring
some much needed stability and polish to the XHR syntax.

ch03.indd 152 12/14/07 4:57:04 PM

